1. Gastos (cálculos antiguos)

Gastos_casa %>% 
  dplyr::select(-Tiempo,-link) %>%
  dplyr::select(fecha, gasto, monto, gastador,obs) %>% tail(30) %>% 
  knitr::kable(format = "markdown", size=12)
fecha gasto monto gastador obs
16/8/2025 VTR 22000 Andrés NA
17/8/2025 Comida 72586 Tami Supermercado
20/8/2025 Electricidad 65242 Andrés 49393- 42306 -47872= 1521
25/8/2025 Comida 35500 Andrés ida al super
25/8/2025 Comida 35000 Andrés piwen
27/8/2025 Comida 37314 Tami Supermercado
30/8/2025 Comida 67203 Tami Supermercado
31/8/2025 Diosi 28000 Andrés american litter
1/9/2025 Comida 7800 Andrés piwen
7/9/2025 Comida 93538 Tami Supermercado
10/9/2025 Diosi 49990 Andrés braloy 7.5 kg
13/9/2025 Comida 60499 Tami Supermercado
23/9/2025 Comida 76691 Tami Supermercado
28/9/2025 Comida 87200 Tami Supermercado
30/9/2025 Gas 82000 Andrés 79500+propina
24/9/2025 Electrodomésticos/mantención casa 40000 Andrés mantención calefont 50 mil
23/9/2025 Gas 80000 Andrés gas 79 mil + propina
30/9/2025 VTR 22000 Andrés NA
4/10/2025 Comida 67440 Tami Supermercado
5/10/2025 Comida 7190 Andrés NA
6/10/2025 Electricidad 75365 Andrés del mes pasado
6/10/2025 Comida 7660 Andrés NA
10/10/2025 Enceres 16990 Andrés casa nativa
12/10/2025 Comida 99947 Tami Supermercado
18/10/2025 Comida 114896 Tami Supermercado
22/10/2025 Otros 18275 Andrés alfred anual
25/10/2025 Comida 87042 Tami Supermercado
25/10/2025 Comida 37026 Andrés la burguesia
31/3/2019 Comida 9000 Andrés NA
8/9/2019 Comida 24588 Andrés Super Lider

#para ver las diferencias depués de la diosi
Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(gastador=ifelse(gastador=="Andrés",1,0)) %>%
    dplyr::group_by(gastador, fecha,.drop = F) %>% 
    dplyr::summarise(gasto_media=mean(monto,na.rm=T)) %>% 
    dplyr::mutate(treat=ifelse(fecha>"2019-W26",1,0)) %>%
    #dplyr::mutate(fecha_simp=lubridate::week(fecha)) %>%#después de  diosi. Junio 24, 2019 
    dplyr::mutate(gastador_nombre=plyr::revalue(as.character(gastador), c("0" = "Tami", "1"="Andrés"))) %>% 
    assign("ts_gastos_casa_week_treat", ., envir = .GlobalEnv) 

gplots::plotmeans(gasto_media ~ gastador_nombre, main="Promedio de gasto por gastador", data=ts_gastos_casa_week_treat,ylim=c(0,75000), xlab="", ylab="")

par(mfrow=c(1,2)) 
gplots::plotmeans(gasto_media ~ gastador_nombre, main="Antes de Diosi", data=ts_gastos_casa_week_treat[ts_gastos_casa_week_treat$treat==0,], xlab="", ylab="", ylim=c(0,70000))

gplots::plotmeans(gasto_media ~ gastador_nombre, main="Después de Diosi", data=ts_gastos_casa_week_treat[ts_gastos_casa_week_treat$treat==1,], xlab="", ylab="",ylim=c(0,70000))

library(ggiraph)
library(scales)
#if( requireNamespace("dplyr", quietly = TRUE)){
gg <- Gastos_casa %>%
  dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
  dplyr::mutate(gastador=ifelse(gastador=="Andrés",1,0)) %>%
  dplyr::mutate(fecha_simp=tsibble::yearweek(fecha)) %>%
  dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
  dplyr::mutate(treat=ifelse(fecha_week>"2019 W26",1,0)) %>%
  dplyr::mutate(gastador_nombre=plyr::revalue(as.character(gastador), c("0" = "Tami", "1"="Andrés"))) %>% 
#  dplyr::mutate(week=as.Date(as.character(lubridate::floor_date(fecha, "week"))))%>%
  #dplyr::mutate(fecha_week= lubridate::parse_date_time(fecha_week, c("%Y-W%V"),exact=T)) %>% 
  dplyr::group_by(gastador_nombre, fecha_simp) %>%
  dplyr::summarise(monto_total=sum(monto)) %>%
  dplyr::mutate(tooltip= paste0(substr(gastador_nombre,1,1),"=",round(monto_total/1000,2))) %>%
  ggplot(aes(hover_css = "fill:none;")) +#, ) +
  #stat_summary(geom = "line", fun.y = median, size = 1, alpha=0.5, aes(color="blue")) +
  geom_line(aes(x = fecha_simp, y = monto_total, color=as.factor(gastador_nombre)),size=1,alpha=.5) +
                       ggiraph::geom_point_interactive(aes(x = fecha_simp, y = monto_total, color=as.factor(gastador_nombre),tooltip=tooltip),size = 1) +
  #geom_text(aes(x = fech_ing_qrt, y = perc_dup-0.05, label = paste0(n)), vjust = -1,hjust = 0, angle=45, size=3) +
 # guides(color = F)+
  theme_custom() +
  geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
  labs(y="Gastos (en miles)",x="Semanas y Meses", subtitle="Interlineado, incorporación de la Diosi; Azul= Tami; Rojo= Andrés") + ggtitle( "Figura 4. Gastos por Gastador") +
  scale_y_continuous(labels = f <- function(x) paste0(x/1000)) + 
  scale_color_manual(name = "Gastador", values= c("blue", "red"), labels = c("Tami", "Andrés")) +
  scale_x_yearweek(date_breaks = "1 month", minor_breaks = "1 week", labels=scales::date_format("%m/%y")) +
  theme(axis.text.x = element_text(vjust = 0.5,angle = 35), legend.position='bottom')+
     theme(
    panel.border = element_blank(), 
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), 
    axis.line = element_line(colour = "black")
    )

#  x <- girafe(ggobj = gg)
#  x <- girafe_options(x = x,
#                      opts_hover(css = "stroke:red;fill:orange") )
#  if( interactive() ) print(x)

#}
tooltip_css <- "background-color:gray;color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;"

#ggiraph(code = {print(gg)}, tooltip_extra_css = tooltip_css, tooltip_opacity = .75 )

x <- girafe(ggobj = gg)
x <- girafe_options(x,
  opts_zoom(min = 1, max = 3), opts_hover(css =tooltip_css))
x
plot<-Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(month=as.Date(as.character(lubridate::floor_date(fecha, "month"))))%>%
    dplyr::group_by(month)%>%
    dplyr::summarise(gasto_total=sum(monto)/1000) %>%
      ggplot2::ggplot(aes(x = month, y = gasto_total)) +
      geom_point()+
      geom_line(size=1) +
      theme_custom() +
      geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
      geom_vline(xintercept = as.Date("2019-03-23"),linetype = "dashed", color="red") +
      labs(y="Gastos (en miles)",x="Meses/Año", subtitle="Interlineado, incorporación de la Diosi") + 
      ggtitle( "Figura. Suma de Gastos por Mes") +        
      scale_x_date(breaks = "1 month", minor_breaks = "1 month", labels=scales::date_format("%m/%y")) +
      theme(axis.text.x = element_text(vjust = 0.5,angle = 45)) 
plotly::ggplotly(plot)  
plot2<-Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::group_by(day)%>%
    summarise(gasto_total=sum(monto)/1000) %>%
      ggplot2::ggplot(aes(x = day, y = gasto_total)) +
      geom_line(size=1) +
      theme_custom() +
      geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
      geom_vline(xintercept = as.Date("2020-03-23"),linetype = "dashed", color="red") +
      labs(y="Gastos (en miles)",x="Meses/Año", subtitle="Interlineado, incorporación de la Diosi") + 
      ggtitle( "Figura. Suma de Gastos por Día") +        
      scale_x_date(breaks = "1 month", minor_breaks = "1 week", labels=scales::date_format("%m/%y")) +
      theme(axis.text.x = element_text(vjust = 0.5,angle = 45)) 
plotly::ggplotly(plot2)  
tsData <- Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::group_by(day)%>%
    summarise(gasto_total=sum(monto))%>%
    dplyr::mutate(covid=case_when(day>as.Date("2019-06-02")~1,TRUE~0))%>%
    dplyr::mutate(covid=case_when(day>as.Date("2020-03-10")~covid+1,TRUE~covid))%>%
    dplyr::mutate(covid=as.factor(covid))%>%
  data.frame()
tsData_gastos <-ts(tsData$gasto_total, frequency=7)
mstsData_gastos <- forecast::msts(Gastos_casa$monto, seasonal.periods=c(7,30))

tsData_gastos = decompose(tsData_gastos)

tsdata_gastos_trend<-cbind(tsData,trend=as.vector(tsData_gastos$trend))%>% na.omit()

# Assuming your time series starts on "2019-03-03"
start_date <- as.Date("2019-03-03")
frequency <- 7  # Weekly data
num_periods <- length(tsData_gastos$x)  # Total number of periods in your time series

# Generate sequence of dates
dates <- tsData$day# seq.Date(from = start_date, by = "day", length.out = num_periods)

# Create a data frame from the decomposed time series object
tsData_gastos_df <- data.frame(
  day = dates,
  Actual = as.numeric(tsData_gastos$x),
  Seasonal = as.numeric(tsData_gastos$seasonal),
  Trend = as.numeric(tsData_gastos$trend),
  Random = as.numeric(tsData_gastos$random)
)

tsData_gastos_long <- tsData_gastos_df %>%
  pivot_longer(cols = c("Actual", "Seasonal", "Trend", "Random"), 
               names_to = "Component", values_to = "Value")

# Plotting with facet_wrap
ggplot(tsData_gastos_long, aes(x = day, y = Value)) +
  geom_line() +
  theme_bw() + 
  labs(title = "Descomposición de los Gastos Diarios", x = "Date", y = "Value") +
  scale_x_date(date_breaks = "3 months", date_labels = "%m %Y") +
  facet_wrap(~ Component, scales = "free_y", ncol=1) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
  theme(strip.text = element_text(size = 12))

#tsData_gastos$trend
#Using the inputted variables, a Type-2 Sum Squares ANCOVA Lagged Dependent Variable model is fitted which estimates the difference in means between interrupted and non-interrupted time periods, while accounting for the lag of the dependent variable and any further specified covariates.
#Typically such analyses use Auto-regressive Integrated Moving Average (ARIMA) models to handle the serial dependence of the residuals of a linear model, which is estimated either as part of the ARIMA process or through a standard linear regression modeling process [9,17]. All such time series methods enable the effect of the event to be separated from general trends and serial dependencies in time, thereby enabling valid statistical inferences to be made about whether an intervention has had an effect on a time series.
   #it uses Type-2 Sum Squares ANCOVA Lagged Dependent Variable model
   #ITSA model da cuenta de observaciones autocorrelacionadas e impactos dinámicos mediante una regresión de deltas en rezagados. Una vez que se incorporan en el modelo, se controlan. 
#residual autocorrelation assumptions
#TSA allows the model to account for baseline levels and trends present in the data therefore allowing us to attribute significant changes to the interruption
#RDestimate(all~agecell,data=metro_region,cutpoint = 21)
tsdata_gastos_trend<-cbind(tsData,trend=as.vector(tsData_gastos$trend))%>% na.omit()

itsa_metro_region_quar2<-
        its.analysis::itsa.model(time = "day", depvar = "trend",data=tsdata_gastos_trend,
                                 interrupt_var = "covid", 
                                 alpha = 0.05,no.plots = F, bootstrap = TRUE, Reps = 10000, print = F) 

print(itsa_metro_region_quar2)
## [[1]]
## [1] "ITSA Model Fit"
## 
## $aov.result
## Anova Table (Type II tests)
## 
## Response: depvar
##                   Sum Sq  Df   F value Pr(>F)    
## interrupt_var 1.0615e+09   2    5.5217 0.0041 ** 
## lag_depvar    2.6601e+11   1 2767.5267 <2e-16 ***
## Residuals     8.3525e+10 869                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $tukey.result
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: stats::aov(formula = x$depvar ~ x$interrupt_var)
## 
## $`x$interrupt_var`
##          diff      lwr      upr     p adj
## 1-0  7228.838 -1713.50 16171.18 0.1398792
## 2-0 31591.276 23553.84 39628.71 0.0000000
## 2-1 24362.438 19721.10 29003.78 0.0000000
## 
## 
## $data
##        depvar interrupt_var lag_depvar
## 2    19269.29             0   16010.00
## 3    24139.00             0   19269.29
## 4    23816.14             0   24139.00
## 5    26510.14             0   23816.14
## 6    23456.71             0   26510.14
## 7    24276.71             0   23456.71
## 8    18818.71             0   24276.71
## 9    18517.14             0   18818.71
## 10   15475.29             0   18517.14
## 11   16365.29             0   15475.29
## 12   12621.29             0   16365.29
## 13   12679.86             0   12621.29
## 14   13440.71             0   12679.86
## 15   15382.86             0   13440.71
## 16   13459.71             0   15382.86
## 17   14644.14             0   13459.71
## 18   13927.00             0   14644.14
## 19   22034.57             0   13927.00
## 20   20986.00             0   22034.57
## 21   20390.57             0   20986.00
## 22   22554.14             0   20390.57
## 23   21782.57             0   22554.14
## 24   22529.57             0   21782.57
## 25   24642.71             0   22529.57
## 26   17692.29             0   24642.71
## 27   19668.29             0   17692.29
## 28   28640.00             0   19668.29
## 29   28706.00             0   28640.00
## 30   28331.57             0   28706.00
## 31   25617.86             0   28331.57
## 32   27223.29             0   25617.86
## 33   31622.57             0   27223.29
## 34   32021.43             0   31622.57
## 35   33634.57             0   32021.43
## 36   30784.86             0   33634.57
## 37   34770.57             0   30784.86
## 38   38443.00             1   34770.57
## 39   35073.00             1   38443.00
## 40   31422.29             1   35073.00
## 41   30103.29             1   31422.29
## 42   19319.29             1   30103.29
## 43   27926.29             1   19319.29
## 44   30715.43             1   27926.29
## 45   31962.29             1   30715.43
## 46   39790.14             1   31962.29
## 47   39211.57             1   39790.14
## 48   44548.57             1   39211.57
## 49   49398.00             1   44548.57
## 50   41039.00             1   49398.00
## 51   34821.29             1   41039.00
## 52   29123.57             1   34821.29
## 53   21275.71             1   29123.57
## 54   28476.14             1   21275.71
## 55   24561.86             1   28476.14
## 56   20323.57             1   24561.86
## 57   25370.00             1   20323.57
## 58   26811.86             1   25370.00
## 59   27151.86             1   26811.86
## 60   27623.29             1   27151.86
## 61   22896.57             1   27623.29
## 62   41889.29             1   22896.57
## 63   44000.14             1   41889.29
## 64   38558.00             1   44000.14
## 65   43373.86             1   38558.00
## 66   49001.00             1   43373.86
## 67   61213.29             1   49001.00
## 68   58939.57             1   61213.29
## 69   42046.86             1   58939.57
## 70   39191.71             1   42046.86
## 71   42646.43             1   39191.71
## 72   36121.57             1   42646.43
## 73   30915.57             1   36121.57
## 74   20273.43             1   30915.57
## 75   23938.29             1   20273.43
## 76   19274.29             1   23938.29
## 77   21662.29             1   19274.29
## 78   15819.00             1   21662.29
## 79   18126.14             1   15819.00
## 80   17240.71             1   18126.14
## 81   16127.71             1   17240.71
## 82   13917.14             1   16127.71
## 83   15379.86             1   13917.14
## 84   19510.14             1   15379.86
## 85   24567.29             1   19510.14
## 86   25700.43             1   24567.29
## 87   25729.00             1   25700.43
## 88   26435.00             1   25729.00
## 89   31157.14             1   26435.00
## 90   29818.43             1   31157.14
## 91   30962.43             1   29818.43
## 92   28746.71             1   30962.43
## 93   27830.71             1   28746.71
## 94   28252.14             1   27830.71
## 95   28717.57             1   28252.14
## 96   21365.43             1   28717.57
## 97   24816.86             1   21365.43
## 98   16838.57             1   24816.86
## 99   15529.14             1   16838.57
## 100  13286.29             1   15529.14
## 101  13629.43             1   13286.29
## 102  14404.86             1   13629.43
## 103  19524.86             1   14404.86
## 104  18475.71             1   19524.86
## 105  22495.00             1   18475.71
## 106  22254.57             1   22495.00
## 107  24173.29             1   22254.57
## 108  27466.43             1   24173.29
## 109  24602.43             1   27466.43
## 110  20531.14             1   24602.43
## 111  20846.43             1   20531.14
## 112  23875.71             1   20846.43
## 113  36312.71             1   23875.71
## 114  34244.00             1   36312.71
## 115  36347.43             1   34244.00
## 116  39779.71             1   36347.43
## 117  42018.71             1   39779.71
## 118  39372.57             1   42018.71
## 119  33444.00             1   39372.57
## 120  29255.86             1   33444.00
## 121  31640.14             1   29255.86
## 122  29671.14             1   31640.14
## 123  31023.71             1   29671.14
## 124  39723.43             1   31023.71
## 125  39314.14             1   39723.43
## 126  38239.86             1   39314.14
## 127  34649.43             1   38239.86
## 128  36688.43             1   34649.43
## 129  42867.57             1   36688.43
## 130  42226.86             1   42867.57
## 131  32155.14             1   42226.86
## 132  33603.00             1   32155.14
## 133  37254.43             1   33603.00
## 134  33145.57             1   37254.43
## 135  31299.43             1   33145.57
## 136  30252.00             1   31299.43
## 137  26310.71             1   30252.00
## 138  27929.86             1   26310.71
## 139  27666.14             1   27929.86
## 140  25017.57             1   27666.14
## 141  27335.00             1   25017.57
## 142  25760.71             1   27335.00
## 143  18436.86             1   25760.71
## 144  21906.00             1   18436.86
## 145  19418.14             1   21906.00
## 146  22826.14             1   19418.14
## 147  23444.29             1   22826.14
## 148  25264.86             1   23444.29
## 149  25473.29             1   25264.86
## 150  27366.86             1   25473.29
## 151  28855.86             1   27366.86
## 152  32326.86             1   28855.86
## 153  27141.43             1   32326.86
## 154  26297.71             1   27141.43
## 155  23499.14             1   26297.71
## 156  30246.29             1   23499.14
## 157  39931.86             1   30246.29
## 158  38020.43             2   39931.86
## 159  35004.00             2   38020.43
## 160  40750.86             2   35004.00
## 161  42363.29             2   40750.86
## 162  46273.57             2   42363.29
## 163  41083.29             2   46273.57
## 164  35711.29             2   41083.29
## 165  41921.71             2   35711.29
## 166  60583.29             2   41921.71
## 167  63115.57             2   60583.29
## 168  61300.14             2   63115.57
## 169  57666.43             2   61300.14
## 170  55834.00             2   57666.43
## 171  58927.71             2   55834.00
## 172  57810.57             2   58927.71
## 173  48987.14             2   57810.57
## 174  52219.29             2   48987.14
## 175  56503.57             2   52219.29
## 176  56545.00             2   56503.57
## 177  64705.57             2   56545.00
## 178  53833.29             2   64705.57
## 179  50114.00             2   53833.29
## 180  39592.43             2   50114.00
## 181  29907.29             2   39592.43
## 182  33923.29             2   29907.29
## 183  45489.00             2   33923.29
## 184  44866.29             2   45489.00
## 185  51680.57             2   44866.29
## 186  58257.00             2   51680.57
## 187  70600.57             2   58257.00
## 188  76648.00             2   70600.57
## 189  69430.14             2   76648.00
## 190  69651.57             2   69430.14
## 191  77745.14             2   69651.57
## 192  72795.86             2   77745.14
## 193  67670.71             2   72795.86
## 194  55357.86             2   67670.71
## 195  48524.00             2   55357.86
## 196  50154.43             2   48524.00
## 197  45111.57             2   50154.43
## 198  36147.00             2   45111.57
## 199  43501.57             2   36147.00
## 200  41472.43             2   43501.57
## 201  41058.00             2   41472.43
## 202  41605.57             2   41058.00
## 203  49382.86             2   41605.57
## 204  59558.57             2   49382.86
## 205  59134.57             2   59558.57
## 206  61109.00             2   59134.57
## 207  63004.43             2   61109.00
## 208  67344.29             2   63004.43
## 209  78180.86             2   67344.29
## 210  69117.86             2   78180.86
## 211  55597.57             2   69117.86
## 212  49426.14             2   55597.57
## 213  39119.43             2   49426.14
## 214  35636.86             2   39119.43
## 215  39201.14             2   35636.86
## 216  27777.00             2   39201.14
## 217  47207.00             2   27777.00
## 218  55587.29             2   47207.00
## 219  56619.71             2   55587.29
## 220  82679.86             2   56619.71
## 221  91259.57             2   82679.86
## 222  93552.71             2   91259.57
## 223 102242.71             2   93552.71
## 224  91884.00             2  102242.71
## 225  85013.86             2   91884.00
## 226  84535.29             2   85013.86
## 227  80700.43             2   84535.29
## 228  79740.57             2   80700.43
## 229  85163.14             2   79740.57
## 230  86724.86             2   85163.14
## 231  80355.00             2   86724.86
## 232  74875.14             2   80355.00
## 233  81347.00             2   74875.14
## 234  66062.43             2   81347.00
## 235  56946.43             2   66062.43
## 236  47732.14             2   56946.43
## 237  38129.71             2   47732.14
## 238  42928.29             2   38129.71
## 239  45392.57             2   42928.29
## 240  37895.43             2   45392.57
## 241  30660.29             2   37895.43
## 242  42430.86             2   30660.29
## 243  35845.14             2   42430.86
## 244  40350.43             2   35845.14
## 245  31494.71             2   40350.43
## 246  30013.29             2   31494.71
## 247  34197.57             2   30013.29
## 248  37430.14             2   34197.57
## 249  26932.43             2   37430.14
## 250  33729.86             2   26932.43
## 251  38081.43             2   33729.86
## 252  44028.00             2   38081.43
## 253  47139.71             2   44028.00
## 254  46558.86             2   47139.71
## 255  58350.57             2   46558.86
## 256  78380.00             2   58350.57
## 257  78168.29             2   78380.00
## 258  70510.86             2   78168.29
## 259  72207.14             2   70510.86
## 260  67881.00             2   72207.14
## 261  69536.43             2   67881.00
## 262  62390.71             2   69536.43
## 263  50113.14             2   62390.71
## 264  45565.57             2   50113.14
## 265  45805.29             2   45565.57
## 266  41348.57             2   45805.29
## 267  51426.86             2   41348.57
## 268  47160.57             2   51426.86
## 269  51907.43             2   47160.57
## 270  49751.43             2   51907.43
## 271  54407.43             2   49751.43
## 272  54746.29             2   54407.43
## 273  61634.57             2   54746.29
## 274  58926.43             2   61634.57
## 275  69999.29             2   58926.43
## 276  63044.86             2   69999.29
## 277  63285.29             2   63044.86
## 278  61395.43             2   63285.29
## 279  67969.43             2   61395.43
## 280  60792.57             2   67969.43
## 281  56859.14             2   60792.57
## 282  44899.43             2   56859.14
## 283  43064.14             2   44899.43
## 284  62790.29             2   43064.14
## 285  69120.71             2   62790.29
## 286  69589.43             2   69120.71
## 287  66633.29             2   69589.43
## 288  65588.57             2   66633.29
## 289  70168.57             2   65588.57
## 290  74644.71             2   70168.57
## 291  52891.00             2   74644.71
## 292  41560.57             2   52891.00
## 293  34704.86             2   41560.57
## 294  46520.00             2   34704.86
## 295  50231.00             2   46520.00
## 296  49216.71             2   50231.00
## 297  76914.86             2   49216.71
## 298  83720.71             2   76914.86
## 299  84485.00             2   83720.71
## 300  89765.00             2   84485.00
## 301  87702.86             2   89765.00
## 302  82013.86             2   87702.86
## 303  85982.43             2   82013.86
## 304  57248.43             2   85982.43
## 305  52968.43             2   57248.43
## 306  52601.86             2   52968.43
## 307  45493.29             2   52601.86
## 308  42298.86             2   45493.29
## 309  46423.71             2   42298.86
## 310  37898.00             2   46423.71
## 311  36435.14             2   37898.00
## 312  30209.57             2   36435.14
## 313  34541.86             2   30209.57
## 314  33604.71             2   34541.86
## 315  37990.71             2   33604.71
## 316  35683.43             2   37990.71
## 317  65201.86             2   35683.43
## 318  62730.57             2   65201.86
## 319  64589.14             2   62730.57
## 320  73744.86             2   64589.14
## 321  76477.71             2   73744.86
## 322 105647.43             2   76477.71
## 323 103790.29             2  105647.43
## 324  76122.29             2  103790.29
## 325  74746.14             2   76122.29
## 326  72865.71             2   74746.14
## 327  63652.57             2   72865.71
## 328  60358.29             2   63652.57
## 329  25957.14             2   60358.29
## 330  30178.43             2   25957.14
## 331  30681.57             2   30178.43
## 332  33337.29             2   30681.57
## 333  32582.71             2   33337.29
## 334  39184.43             2   32582.71
## 335  40415.71             2   39184.43
## 336  34975.43             2   40415.71
## 337  34076.14             2   34975.43
## 338  34221.14             2   34076.14
## 339  28862.57             2   34221.14
## 340  35729.86             2   28862.57
## 341  36489.29             2   35729.86
## 342  36785.14             2   36489.29
## 343  37787.71             2   36785.14
## 344  39832.14             2   37787.71
## 345  41917.86             2   39832.14
## 346  41633.57             2   41917.86
## 347  33557.00             2   41633.57
## 348  22759.57             2   33557.00
## 349  28877.86             2   22759.57
## 350  27574.00             2   28877.86
## 351  27104.71             2   27574.00
## 352  24376.14             2   27104.71
## 353  29732.29             2   24376.14
## 354  34030.00             2   29732.29
## 355  39139.71             2   34030.00
## 356  37066.57             2   39139.71
## 357  38509.29             2   37066.57
## 358  40957.29             2   38509.29
## 359  49423.00             2   40957.29
## 360  50053.29             2   49423.00
## 361  50284.14             2   50053.29
## 362  53103.86             2   50284.14
## 363  50223.00             2   53103.86
## 364  49587.14             2   50223.00
## 365  41167.71             2   49587.14
## 366  37958.71             2   41167.71
## 367  33582.29             2   37958.71
## 368  31039.43             2   33582.29
## 369  26526.57             2   31039.43
## 370  34869.43             2   26526.57
## 371  37487.43             2   34869.43
## 372  46514.43             2   37487.43
## 373  39613.43             2   46514.43
## 374  38980.57             2   39613.43
## 375  37306.14             2   38980.57
## 376  36771.29             2   37306.14
## 377  26317.00             2   36771.29
## 378  31580.71             2   26317.00
## 379  23626.57             2   31580.71
## 380  33035.71             2   23626.57
## 381  44864.57             2   33035.71
## 382  48946.14             2   44864.57
## 383  46969.57             2   48946.14
## 384  49249.57             2   46969.57
## 385  56370.14             2   49249.57
## 386  67228.71             2   56370.14
## 387  59457.29             2   67228.71
## 388  53124.71             2   59457.29
## 389  52814.14             2   53124.71
## 390  61262.00             2   52814.14
## 391  61861.14             2   61262.00
## 392  71784.71             2   61861.14
## 393  59313.29             2   71784.71
## 394  61107.00             2   59313.29
## 395  60603.43             2   61107.00
## 396  60012.57             2   60603.43
## 397  58280.43             2   60012.57
## 398  56862.71             2   58280.43
## 399  41704.43             2   56862.71
## 400  51533.00             2   41704.43
## 401  50388.71             2   51533.00
## 402  49205.29             2   50388.71
## 403  56533.29             2   49205.29
## 404  47996.14             2   56533.29
## 405  47207.57             2   47996.14
## 406  45292.00             2   47207.57
## 407  40343.43             2   45292.00
## 408  39004.86             2   40343.43
## 409  36788.43             2   39004.86
## 410  30027.57             2   36788.43
## 411  39040.14             2   30027.57
## 412  42390.14             2   39040.14
## 413  36291.14             2   42390.14
## 414  30668.29             2   36291.14
## 415  47693.00             2   30668.29
## 416  52094.43             2   47693.00
## 417  56592.57             2   52094.43
## 418  47971.43             2   56592.57
## 419  43762.43             2   47971.43
## 420  42246.71             2   43762.43
## 421  46352.43             2   42246.71
## 422  33094.86             2   46352.43
## 423  32784.86             2   33094.86
## 424  26212.43             2   32784.86
## 425  32611.57             2   26212.43
## 426  42144.86             2   32611.57
## 427  50034.86             2   42144.86
## 428  46332.00             2   50034.86
## 429  42976.29             2   46332.00
## 430  39456.29             2   42976.29
## 431  39328.29             2   39456.29
## 432  35296.14             2   39328.29
## 433  30875.43             2   35296.14
## 434  27709.00             2   30875.43
## 435  29513.29             2   27709.00
## 436  31630.43             2   29513.29
## 437  29346.14             2   31630.43
## 438  34916.86             2   29346.14
## 439  42020.86             2   34916.86
## 440  38303.00             2   42020.86
## 441  37966.43             2   38303.00
## 442  41408.14             2   37966.43
## 443  38988.14             2   41408.14
## 444  43555.29             2   38988.14
## 445  38114.00             2   43555.29
## 446  27847.86             2   38114.00
## 447  26517.00             2   27847.86
## 448  39518.29             2   26517.00
## 449  39153.71             2   39518.29
## 450  45623.14             2   39153.71
## 451  40627.43             2   45623.14
## 452  41027.71             2   40627.43
## 453  42882.86             2   41027.71
## 454  47139.43             2   42882.86
## 455  35547.57             2   47139.43
## 456  41099.00             2   35547.57
## 457  35859.57             2   41099.00
## 458  44524.57             2   35859.57
## 459  48554.29             2   44524.57
## 460  51554.29             2   48554.29
## 461  47810.29             2   51554.29
## 462  50490.00             2   47810.29
## 463  50720.71             2   50490.00
## 464  52720.71             2   50720.71
## 465  52145.57             2   52720.71
## 466  55515.57             2   52145.57
## 467  52457.00             2   55515.57
## 468  58239.57             2   52457.00
## 469  50523.57             2   58239.57
## 470  47788.57             2   50523.57
## 471  46170.00             2   47788.57
## 472  42305.57             2   46170.00
## 473  46605.57             2   42305.57
## 474  55149.57             2   46605.57
## 475  48769.57             2   55149.57
## 476  50719.43             2   48769.57
## 477  44753.71             2   50719.43
## 478  42898.00             2   44753.71
## 479  46141.14             2   42898.00
## 480  34022.57             2   46141.14
## 481  26651.86             2   34022.57
## 482  28791.86             2   26651.86
## 483  31879.00             2   28791.86
## 484  33584.71             2   31879.00
## 485  34690.43             2   33584.71
## 486  27410.43             2   34690.43
## 487  41755.00             2   27410.43
## 488  49379.57             2   41755.00
## 489  57198.86             2   49379.57
## 490  51144.57             2   57198.86
## 491  56677.43             2   51144.57
## 492  65416.43             2   56677.43
## 493  69779.71             2   65416.43
## 494  54046.00             2   69779.71
## 495  43259.57             2   54046.00
## 496  40998.57             2   43259.57
## 497  41368.57             2   40998.57
## 498  42274.29             2   41368.57
## 499  35962.71             2   42274.29
## 500  38709.00             2   35962.71
## 501  44778.14             2   38709.00
## 502  51282.43             2   44778.14
## 503  52094.86             2   51282.43
## 504  52221.43             2   52094.86
## 505  45011.43             2   52221.43
## 506  46545.43             2   45011.43
## 507  42263.00             2   46545.43
## 508  45417.43             2   42263.00
## 509  45034.71             2   45417.43
## 510  37840.57             2   45034.71
## 511  39135.43             2   37840.57
## 512  38191.14             2   39135.43
## 513  39456.86             2   38191.14
## 514  42479.14             2   39456.86
## 515  34282.57             2   42479.14
## 516  28878.43             2   34282.57
## 517  56227.14             2   28878.43
## 518  65569.43             2   56227.14
## 519  69751.29             2   65569.43
## 520  62171.71             2   69751.29
## 521  63705.14             2   62171.71
## 522  79257.86             2   63705.14
## 523  87244.71             2   79257.86
## 524  58568.00             2   87244.71
## 525  52695.29             2   58568.00
## 526  48911.00             2   52695.29
## 527  53924.00             2   48911.00
## 528  53358.86             2   53924.00
## 529  42121.14             2   53358.86
## 530  47835.71             2   42121.14
## 531  62329.29             2   47835.71
## 532  56056.86             2   62329.29
## 533  59946.43             2   56056.86
## 534  64511.57             2   59946.43
## 535  61137.43             2   64511.57
## 536  55448.71             2   61137.43
## 537  47964.43             2   55448.71
## 538  46425.71             2   47964.43
## 539  55512.00             2   46425.71
## 540  55226.29             2   55512.00
## 541  46709.14             2   55226.29
## 542  49254.71             2   46709.14
## 543  49056.29             2   49254.71
## 544  49850.57             2   49056.29
## 545  39145.71             2   49850.57
## 546  29799.43             2   39145.71
## 547  34769.86             2   29799.43
## 548  44061.57             2   34769.86
## 549  43829.14             2   44061.57
## 550  45782.00             2   43829.14
## 551  38924.57             2   45782.00
## 552  49242.43             2   38924.57
## 553  50565.00             2   49242.43
## 554  38864.43             2   50565.00
## 555  49786.71             2   38864.43
## 556  58787.86             2   49786.71
## 557  58060.86             2   58787.86
## 558  62179.43             2   58060.86
## 559  57333.86             2   62179.43
## 560  70797.00             2   57333.86
## 561  89901.71             2   70797.00
## 562  78558.14             2   89901.71
## 563  65466.00             2   78558.14
## 564  70525.00             2   65466.00
## 565  68377.86             2   70525.00
## 566  69736.29             2   68377.86
## 567  60085.86             2   69736.29
## 568  41757.00             2   60085.86
## 569  49780.29             2   41757.00
## 570  56540.29             2   49780.29
## 571  57894.29             2   56540.29
## 572  60270.29             2   57894.29
## 573  61011.00             2   60270.29
## 574  57721.43             2   61011.00
## 575  71741.00             2   57721.43
## 576  59576.00             2   71741.00
## 577  52390.29             2   59576.00
## 578  61092.29             2   52390.29
## 579  62814.00             2   61092.29
## 580  54908.29             2   62814.00
## 581  62082.00             2   54908.29
## 582  57017.71             2   62082.00
## 583  53634.43             2   57017.71
## 584  69169.00             2   53634.43
## 585  52488.14             2   69169.00
## 586  60895.57             2   52488.14
## 587  59856.57             2   60895.57
## 588  52670.00             2   59856.57
## 589  51874.57             2   52670.00
## 590  52190.57             2   51874.57
## 591  41562.43             2   52190.57
## 592  44764.14             2   41562.43
## 593  38612.71             2   44764.14
## 594  43473.14             2   38612.71
## 595  53505.00             2   43473.14
## 596  45870.86             2   53505.00
## 597  52578.00             2   45870.86
## 598  55300.00             2   52578.00
## 599  61789.71             2   55300.00
## 600  57391.71             2   61789.71
## 601  62902.29             2   57391.71
## 602  53250.43             2   62902.29
## 603  55402.57             2   53250.43
## 604  56291.29             2   55402.57
## 605  58933.57             2   56291.29
## 606  59590.71             2   58933.57
## 607  59065.00             2   59590.71
## 608  52399.57             2   59065.00
## 609  60483.43             2   52399.57
## 610  58262.71             2   60483.43
## 611  54939.71             2   58262.71
## 612  51169.00             2   54939.71
## 613  43113.29             2   51169.00
## 614  56289.71             2   43113.29
## 615  60739.86             2   56289.71
## 616  50363.14             2   60739.86
## 617  62270.86             2   50363.14
## 618  67061.57             2   62270.86
## 619  59609.00             2   67061.57
## 620  85054.00             2   59609.00
## 621  68023.29             2   85054.00
## 622  59242.29             2   68023.29
## 623  61535.14             2   59242.29
## 624  56215.86             2   61535.14
## 625  45152.29             2   56215.86
## 626  57409.57             2   45152.29
## 627  35151.43             2   57409.57
## 628  34991.43             2   35151.43
## 629  45944.71             2   34991.43
## 630  57944.71             2   45944.71
## 631  55706.29             2   57944.71
## 632  88593.71             2   55706.29
## 633  77359.43             2   88593.71
## 634  79878.71             2   77359.43
## 635  81753.00             2   79878.71
## 636  75716.00             2   81753.00
## 637  67381.43             2   75716.00
## 638  63528.57             2   67381.43
## 639  49682.86             2   63528.57
## 640  47815.00             2   49682.86
## 641  46546.14             2   47815.00
## 642  44808.71             2   46546.14
## 643  42959.57             2   44808.71
## 644  46023.86             2   42959.57
## 645  51309.57             2   46023.86
## 646  68447.29             2   51309.57
## 647  84959.29             2   68447.29
## 648  81666.29             2   84959.29
## 649  82700.86             2   81666.29
## 650  89422.14             2   82700.86
## 651 104812.71             2   89422.14
## 652  98812.71             2  104812.71
## 653  64779.86             2   98812.71
## 654  61862.86             2   64779.86
## 655  58376.43             2   61862.86
## 656  59503.57             2   58376.43
## 657  55429.43             2   59503.57
## 658  44454.57             2   55429.43
## 659  47184.00             2   44454.57
## 660  52126.71             2   47184.00
## 661  51202.00             2   52126.71
## 662  64437.14             2   51202.00
## 663  64297.14             2   64437.14
## 664  64628.57             2   64297.14
## 665  51413.14             2   64628.57
## 666  52969.43             2   51413.14
## 667  54135.29             2   52969.43
## 668  48799.43             2   54135.29
## 669  41907.86             2   48799.43
## 670  45382.00             2   41907.86
## 671  42633.29             2   45382.00
## 672  46624.71             2   42633.29
## 673  44051.86             2   46624.71
## 674  35852.86             2   44051.86
## 675  29737.71             2   35852.86
## 676  29734.86             2   29737.71
## 677  32881.71             2   29734.86
## 678  38298.57             2   32881.71
## 679  40886.14             2   38298.57
## 680  38601.86             2   40886.14
## 681  38628.86             2   38601.86
## 682  39142.57             2   38628.86
## 683  32666.14             2   39142.57
## 684  39911.57             2   32666.14
## 685  39336.29             2   39911.57
## 686  39678.86             2   39336.29
## 687  41963.14             2   39678.86
## 688  54220.57             2   41963.14
## 689  63901.86             2   54220.57
## 690  73116.00             2   63901.86
## 691  60863.86             2   73116.00
## 692  56293.86             2   60863.86
## 693  52725.00             2   56293.86
## 694  58625.00             2   52725.00
## 695  47513.00             2   58625.00
## 696  40300.14             2   47513.00
## 697  33312.43             2   40300.14
## 698  29556.71             2   33312.43
## 699  27816.71             2   29556.71
## 700  34120.29             2   27816.71
## 701  32132.57             2   34120.29
## 702  32902.57             2   32132.57
## 703  39694.14             2   32902.57
## 704  72501.29             2   39694.14
## 705  79551.14             2   72501.29
## 706  99637.71             2   79551.14
## 707  95424.29             2   99637.71
## 708  98395.14             2   95424.29
## 709 115594.71             2   98395.14
## 710 114267.57             2  115594.71
## 711  88353.29             2  114267.57
## 712  88750.86             2   88353.29
## 713  78835.71             2   88750.86
## 714  75519.14             2   78835.71
## 715  73202.86             2   75519.14
## 716  53433.29             2   73202.86
## 717  48165.71             2   53433.29
## 718  52163.14             2   48165.71
## 719  49306.86             2   52163.14
## 720  36846.86             2   49306.86
## 721  43220.57             2   36846.86
## 722  38952.29             2   43220.57
## 723  41522.29             2   38952.29
## 724  39090.00             2   41522.29
## 725  28452.57             2   39090.00
## 726  32975.00             2   28452.57
## 727  33690.71             2   32975.00
## 728  26405.29             2   33690.71
## 729  47087.43             2   26405.29
## 730  49660.29             2   47087.43
## 731  47409.71             2   49660.29
## 732  53881.71             2   47409.71
## 733  45189.57             2   53881.71
## 734  45503.86             2   45189.57
## 735  54640.14             2   45503.86
## 736  39131.29             2   54640.14
## 737  35024.14             2   39131.29
## 738  44755.43             2   35024.14
## 739  41063.29             2   44755.43
## 740  42783.29             2   41063.29
## 741  45952.57             2   42783.29
## 742  44937.43             2   45952.57
## 743  40838.43             2   44937.43
## 744  48838.43             2   40838.43
## 745  43139.14             2   48838.43
## 746  67134.29             2   43139.14
## 747  73224.29             2   67134.29
## 748  68770.71             2   73224.29
## 749  59539.29             2   68770.71
## 750  82179.86             2   59539.29
## 751  74252.14             2   82179.86
## 752  73015.00             2   74252.14
## 753  56116.43             2   73015.00
## 754 111885.00             2   56116.43
## 755 131425.14             2  111885.00
## 756 136678.00             2  131425.14
## 757 115531.29             2  136678.00
## 758 118310.86             2  115531.29
## 759 117449.43             2  118310.86
## 760 115193.57             2  117449.43
## 761  61025.43             2  115193.57
## 762  43913.86             2   61025.43
## 763  46099.29             2   43913.86
## 764  44524.86             2   46099.29
## 765  42208.71             2   44524.86
## 766 166486.57             2   42208.71
## 767 171565.29             2  166486.57
## 768 200415.71             2  171565.29
## 769 204498.14             2  200415.71
## 770 197558.86             2  204498.14
## 771 195266.57             2  197558.86
## 772 203144.29             2  195266.57
## 773  85493.71             2  203144.29
## 774  74721.57             2   85493.71
## 775  36232.14             2   74721.57
## 776  40161.71             2   36232.14
## 777  40629.86             2   40161.71
## 778  45663.71             2   40629.86
## 779  39252.29             2   45663.71
## 780  39618.57             2   39252.29
## 781  39438.43             2   39618.57
## 782  44650.71             2   39438.43
## 783  38626.71             2   44650.71
## 784  38280.43             2   38626.71
## 785  44134.14             2   38280.43
## 786  47596.43             2   44134.14
## 787  45598.43             2   47596.43
## 788  42564.29             2   45598.43
## 789  45699.14             2   42564.29
## 790  49553.86             2   45699.14
## 791  50018.43             2   49553.86
## 792  43772.86             2   50018.43
## 793  39235.43             2   43772.86
## 794  39905.00             2   39235.43
## 795  40374.43             2   39905.00
## 796  34230.57             2   40374.43
## 797  34324.14             2   34230.57
## 798  33491.57             2   34324.14
## 799  33366.43             2   33491.57
## 800  46646.86             2   33366.43
## 801  49770.86             2   46646.86
## 802  57339.86             2   49770.86
## 803  59799.14             2   57339.86
## 804  53577.14             2   59799.14
## 805  61775.29             2   53577.14
## 806  70627.86             2   61775.29
## 807  57888.43             2   70627.86
## 808  49960.71             2   57888.43
## 809  42923.71             2   49960.71
## 810  47284.86             2   42923.71
## 811  52284.86             2   47284.86
## 812  50191.00             2   52284.86
## 813  36465.86             2   50191.00
## 814  34525.14             2   36465.86
## 815  43199.14             2   34525.14
## 816  52757.43             2   43199.14
## 817  43200.86             2   52757.43
## 818  36772.29             2   43200.86
## 819  29568.00             2   36772.29
## 820  42362.00             2   29568.00
## 821  42566.29             2   42362.00
## 822  39596.00             2   42566.29
## 823  32925.00             2   39596.00
## 824  43416.57             2   32925.00
## 825  52624.86             2   43416.57
## 826  57733.71             2   52624.86
## 827  54120.57             2   57733.71
## 828  53353.43             2   54120.57
## 829  56286.86             2   53353.43
## 830  60626.86             2   56286.86
## 831  61375.29             2   60626.86
## 832  53710.86             2   61375.29
## 833  55795.57             2   53710.86
## 834  55130.14             2   55795.57
## 835  57700.14             2   55130.14
## 836  61333.14             2   57700.14
## 837  59230.71             2   61333.14
## 838  49195.00             2   59230.71
## 839  55436.43             2   49195.00
## 840  50353.14             2   55436.43
## 841  43194.86             2   50353.14
## 842  47539.71             2   43194.86
## 843  35271.00             2   47539.71
## 844  34774.86             2   35271.00
## 845  48788.71             2   34774.86
## 846  50717.71             2   48788.71
## 847  51727.43             2   50717.71
## 848  51313.14             2   51727.43
## 849  56125.29             2   51313.14
## 850  68503.71             2   56125.29
## 851  62945.00             2   68503.71
## 852  50209.71             2   62945.00
## 853  49436.29             2   50209.71
## 854  55308.00             2   49436.29
## 855  62650.86             2   55308.00
## 856  55683.00             2   62650.86
## 857  49762.14             2   55683.00
## 858  51835.00             2   49762.14
## 859  49806.43             2   51835.00
## 860  52799.57             2   49806.43
## 861  50620.71             2   52799.57
## 862  49192.00             2   50620.71
## 863  66245.86             2   49192.00
## 864  62359.71             2   66245.86
## 865  70816.86             2   62359.71
## 866  84559.71             2   70816.86
## 867  80831.43             2   84559.71
## 868  74717.14             2   80831.43
## 869  77935.14             2   74717.14
## 870  57977.86             2   77935.14
## 871  66541.71             2   57977.86
## 872  70498.29             2   66541.71
## 873  58251.86             2   70498.29
## 874  66341.57             2   58251.86
## 
## $alpha
## [1] 0.05
## 
## $itsa.result
## [1] "Significant variation between time periods with chosen alpha"
## 
## $group.means
##   interrupt_var count     mean      s.d.
## 1             0    37 22066.04  6308.636
## 2             1   120 29463.10  9187.258
## 3             2   717 53825.54 21730.052
## 
## $dependent
##   [1]  19269.29  24139.00  23816.14  26510.14  23456.71  24276.71  18818.71
##   [8]  18517.14  15475.29  16365.29  12621.29  12679.86  13440.71  15382.86
##  [15]  13459.71  14644.14  13927.00  22034.57  20986.00  20390.57  22554.14
##  [22]  21782.57  22529.57  24642.71  17692.29  19668.29  28640.00  28706.00
##  [29]  28331.57  25617.86  27223.29  31622.57  32021.43  33634.57  30784.86
##  [36]  34770.57  38443.00  35073.00  31422.29  30103.29  19319.29  27926.29
##  [43]  30715.43  31962.29  39790.14  39211.57  44548.57  49398.00  41039.00
##  [50]  34821.29  29123.57  21275.71  28476.14  24561.86  20323.57  25370.00
##  [57]  26811.86  27151.86  27623.29  22896.57  41889.29  44000.14  38558.00
##  [64]  43373.86  49001.00  61213.29  58939.57  42046.86  39191.71  42646.43
##  [71]  36121.57  30915.57  20273.43  23938.29  19274.29  21662.29  15819.00
##  [78]  18126.14  17240.71  16127.71  13917.14  15379.86  19510.14  24567.29
##  [85]  25700.43  25729.00  26435.00  31157.14  29818.43  30962.43  28746.71
##  [92]  27830.71  28252.14  28717.57  21365.43  24816.86  16838.57  15529.14
##  [99]  13286.29  13629.43  14404.86  19524.86  18475.71  22495.00  22254.57
## [106]  24173.29  27466.43  24602.43  20531.14  20846.43  23875.71  36312.71
## [113]  34244.00  36347.43  39779.71  42018.71  39372.57  33444.00  29255.86
## [120]  31640.14  29671.14  31023.71  39723.43  39314.14  38239.86  34649.43
## [127]  36688.43  42867.57  42226.86  32155.14  33603.00  37254.43  33145.57
## [134]  31299.43  30252.00  26310.71  27929.86  27666.14  25017.57  27335.00
## [141]  25760.71  18436.86  21906.00  19418.14  22826.14  23444.29  25264.86
## [148]  25473.29  27366.86  28855.86  32326.86  27141.43  26297.71  23499.14
## [155]  30246.29  39931.86  38020.43  35004.00  40750.86  42363.29  46273.57
## [162]  41083.29  35711.29  41921.71  60583.29  63115.57  61300.14  57666.43
## [169]  55834.00  58927.71  57810.57  48987.14  52219.29  56503.57  56545.00
## [176]  64705.57  53833.29  50114.00  39592.43  29907.29  33923.29  45489.00
## [183]  44866.29  51680.57  58257.00  70600.57  76648.00  69430.14  69651.57
## [190]  77745.14  72795.86  67670.71  55357.86  48524.00  50154.43  45111.57
## [197]  36147.00  43501.57  41472.43  41058.00  41605.57  49382.86  59558.57
## [204]  59134.57  61109.00  63004.43  67344.29  78180.86  69117.86  55597.57
## [211]  49426.14  39119.43  35636.86  39201.14  27777.00  47207.00  55587.29
## [218]  56619.71  82679.86  91259.57  93552.71 102242.71  91884.00  85013.86
## [225]  84535.29  80700.43  79740.57  85163.14  86724.86  80355.00  74875.14
## [232]  81347.00  66062.43  56946.43  47732.14  38129.71  42928.29  45392.57
## [239]  37895.43  30660.29  42430.86  35845.14  40350.43  31494.71  30013.29
## [246]  34197.57  37430.14  26932.43  33729.86  38081.43  44028.00  47139.71
## [253]  46558.86  58350.57  78380.00  78168.29  70510.86  72207.14  67881.00
## [260]  69536.43  62390.71  50113.14  45565.57  45805.29  41348.57  51426.86
## [267]  47160.57  51907.43  49751.43  54407.43  54746.29  61634.57  58926.43
## [274]  69999.29  63044.86  63285.29  61395.43  67969.43  60792.57  56859.14
## [281]  44899.43  43064.14  62790.29  69120.71  69589.43  66633.29  65588.57
## [288]  70168.57  74644.71  52891.00  41560.57  34704.86  46520.00  50231.00
## [295]  49216.71  76914.86  83720.71  84485.00  89765.00  87702.86  82013.86
## [302]  85982.43  57248.43  52968.43  52601.86  45493.29  42298.86  46423.71
## [309]  37898.00  36435.14  30209.57  34541.86  33604.71  37990.71  35683.43
## [316]  65201.86  62730.57  64589.14  73744.86  76477.71 105647.43 103790.29
## [323]  76122.29  74746.14  72865.71  63652.57  60358.29  25957.14  30178.43
## [330]  30681.57  33337.29  32582.71  39184.43  40415.71  34975.43  34076.14
## [337]  34221.14  28862.57  35729.86  36489.29  36785.14  37787.71  39832.14
## [344]  41917.86  41633.57  33557.00  22759.57  28877.86  27574.00  27104.71
## [351]  24376.14  29732.29  34030.00  39139.71  37066.57  38509.29  40957.29
## [358]  49423.00  50053.29  50284.14  53103.86  50223.00  49587.14  41167.71
## [365]  37958.71  33582.29  31039.43  26526.57  34869.43  37487.43  46514.43
## [372]  39613.43  38980.57  37306.14  36771.29  26317.00  31580.71  23626.57
## [379]  33035.71  44864.57  48946.14  46969.57  49249.57  56370.14  67228.71
## [386]  59457.29  53124.71  52814.14  61262.00  61861.14  71784.71  59313.29
## [393]  61107.00  60603.43  60012.57  58280.43  56862.71  41704.43  51533.00
## [400]  50388.71  49205.29  56533.29  47996.14  47207.57  45292.00  40343.43
## [407]  39004.86  36788.43  30027.57  39040.14  42390.14  36291.14  30668.29
## [414]  47693.00  52094.43  56592.57  47971.43  43762.43  42246.71  46352.43
## [421]  33094.86  32784.86  26212.43  32611.57  42144.86  50034.86  46332.00
## [428]  42976.29  39456.29  39328.29  35296.14  30875.43  27709.00  29513.29
## [435]  31630.43  29346.14  34916.86  42020.86  38303.00  37966.43  41408.14
## [442]  38988.14  43555.29  38114.00  27847.86  26517.00  39518.29  39153.71
## [449]  45623.14  40627.43  41027.71  42882.86  47139.43  35547.57  41099.00
## [456]  35859.57  44524.57  48554.29  51554.29  47810.29  50490.00  50720.71
## [463]  52720.71  52145.57  55515.57  52457.00  58239.57  50523.57  47788.57
## [470]  46170.00  42305.57  46605.57  55149.57  48769.57  50719.43  44753.71
## [477]  42898.00  46141.14  34022.57  26651.86  28791.86  31879.00  33584.71
## [484]  34690.43  27410.43  41755.00  49379.57  57198.86  51144.57  56677.43
## [491]  65416.43  69779.71  54046.00  43259.57  40998.57  41368.57  42274.29
## [498]  35962.71  38709.00  44778.14  51282.43  52094.86  52221.43  45011.43
## [505]  46545.43  42263.00  45417.43  45034.71  37840.57  39135.43  38191.14
## [512]  39456.86  42479.14  34282.57  28878.43  56227.14  65569.43  69751.29
## [519]  62171.71  63705.14  79257.86  87244.71  58568.00  52695.29  48911.00
## [526]  53924.00  53358.86  42121.14  47835.71  62329.29  56056.86  59946.43
## [533]  64511.57  61137.43  55448.71  47964.43  46425.71  55512.00  55226.29
## [540]  46709.14  49254.71  49056.29  49850.57  39145.71  29799.43  34769.86
## [547]  44061.57  43829.14  45782.00  38924.57  49242.43  50565.00  38864.43
## [554]  49786.71  58787.86  58060.86  62179.43  57333.86  70797.00  89901.71
## [561]  78558.14  65466.00  70525.00  68377.86  69736.29  60085.86  41757.00
## [568]  49780.29  56540.29  57894.29  60270.29  61011.00  57721.43  71741.00
## [575]  59576.00  52390.29  61092.29  62814.00  54908.29  62082.00  57017.71
## [582]  53634.43  69169.00  52488.14  60895.57  59856.57  52670.00  51874.57
## [589]  52190.57  41562.43  44764.14  38612.71  43473.14  53505.00  45870.86
## [596]  52578.00  55300.00  61789.71  57391.71  62902.29  53250.43  55402.57
## [603]  56291.29  58933.57  59590.71  59065.00  52399.57  60483.43  58262.71
## [610]  54939.71  51169.00  43113.29  56289.71  60739.86  50363.14  62270.86
## [617]  67061.57  59609.00  85054.00  68023.29  59242.29  61535.14  56215.86
## [624]  45152.29  57409.57  35151.43  34991.43  45944.71  57944.71  55706.29
## [631]  88593.71  77359.43  79878.71  81753.00  75716.00  67381.43  63528.57
## [638]  49682.86  47815.00  46546.14  44808.71  42959.57  46023.86  51309.57
## [645]  68447.29  84959.29  81666.29  82700.86  89422.14 104812.71  98812.71
## [652]  64779.86  61862.86  58376.43  59503.57  55429.43  44454.57  47184.00
## [659]  52126.71  51202.00  64437.14  64297.14  64628.57  51413.14  52969.43
## [666]  54135.29  48799.43  41907.86  45382.00  42633.29  46624.71  44051.86
## [673]  35852.86  29737.71  29734.86  32881.71  38298.57  40886.14  38601.86
## [680]  38628.86  39142.57  32666.14  39911.57  39336.29  39678.86  41963.14
## [687]  54220.57  63901.86  73116.00  60863.86  56293.86  52725.00  58625.00
## [694]  47513.00  40300.14  33312.43  29556.71  27816.71  34120.29  32132.57
## [701]  32902.57  39694.14  72501.29  79551.14  99637.71  95424.29  98395.14
## [708] 115594.71 114267.57  88353.29  88750.86  78835.71  75519.14  73202.86
## [715]  53433.29  48165.71  52163.14  49306.86  36846.86  43220.57  38952.29
## [722]  41522.29  39090.00  28452.57  32975.00  33690.71  26405.29  47087.43
## [729]  49660.29  47409.71  53881.71  45189.57  45503.86  54640.14  39131.29
## [736]  35024.14  44755.43  41063.29  42783.29  45952.57  44937.43  40838.43
## [743]  48838.43  43139.14  67134.29  73224.29  68770.71  59539.29  82179.86
## [750]  74252.14  73015.00  56116.43 111885.00 131425.14 136678.00 115531.29
## [757] 118310.86 117449.43 115193.57  61025.43  43913.86  46099.29  44524.86
## [764]  42208.71 166486.57 171565.29 200415.71 204498.14 197558.86 195266.57
## [771] 203144.29  85493.71  74721.57  36232.14  40161.71  40629.86  45663.71
## [778]  39252.29  39618.57  39438.43  44650.71  38626.71  38280.43  44134.14
## [785]  47596.43  45598.43  42564.29  45699.14  49553.86  50018.43  43772.86
## [792]  39235.43  39905.00  40374.43  34230.57  34324.14  33491.57  33366.43
## [799]  46646.86  49770.86  57339.86  59799.14  53577.14  61775.29  70627.86
## [806]  57888.43  49960.71  42923.71  47284.86  52284.86  50191.00  36465.86
## [813]  34525.14  43199.14  52757.43  43200.86  36772.29  29568.00  42362.00
## [820]  42566.29  39596.00  32925.00  43416.57  52624.86  57733.71  54120.57
## [827]  53353.43  56286.86  60626.86  61375.29  53710.86  55795.57  55130.14
## [834]  57700.14  61333.14  59230.71  49195.00  55436.43  50353.14  43194.86
## [841]  47539.71  35271.00  34774.86  48788.71  50717.71  51727.43  51313.14
## [848]  56125.29  68503.71  62945.00  50209.71  49436.29  55308.00  62650.86
## [855]  55683.00  49762.14  51835.00  49806.43  52799.57  50620.71  49192.00
## [862]  66245.86  62359.71  70816.86  84559.71  80831.43  74717.14  77935.14
## [869]  57977.86  66541.71  70498.29  58251.86  66341.57
## 
## $interrupt_var
##   [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [297] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [334] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [408] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [445] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [482] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [519] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [593] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [630] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [667] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [741] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [778] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [815] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [852] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## Levels: 0 1 2
## 
## $residuals
##             2             3             4             5             6 
##   2011.530111   4037.219817   -534.907975   2440.814380  -2963.375336 
##             7             8             9            10            11 
##    521.020078  -5652.504844  -1191.472587  -3970.181104   -425.882819 
##            12            13            14            15            16 
##  -4946.489136  -1620.935627   -911.187407    367.038075  -3250.801874 
##            17            18            19            20            21 
##   -388.255446  -2138.920451   6594.423644  -1528.744627  -1209.198821 
##            22            23            24            25            26 
##   1473.938439  -1185.546742    234.719826   1696.036932  -7098.301856 
##            27            28            29            30            31 
##    942.582118   8190.055861    427.415421     -4.604181  -2391.595327 
##            32            33            34            35            36 
##   1581.796905   4580.199506   1140.277910   2405.381467  -1851.947351 
##            37            38            39            40            41 
##   4620.403021   4311.115468  -2263.414002  -2973.495378  -1106.913606 
##            42            43            44            45            46 
## -10739.965592   7277.059719   2555.808673   1368.883835   8108.744198 
##            47            48            49            50            51 
##    699.652198   6541.508632   6733.917074  -5856.652437  -4780.375479 
##            52            53            54            55            56 
##  -5052.565951  -7928.646792   6119.754179  -4077.563352  -4900.277141 
##            57            58            59            60            61 
##   3844.442960    882.830093    -35.322004    139.425502  -4998.653285 
##            62            63            64            65            66 
##  18118.551084   3656.529690  -3627.528889   5937.095133   7361.962619 
##            67            68            69            70            71 
##  14664.052050   1734.002669 -13174.688158  -1289.394350   4656.692947 
##            72            73            74            75            76 
##  -4882.718060  -4395.184041 -10494.616237   2456.482898  -5405.439809 
##            77            78            79            80            81 
##   1052.326331  -6874.707570    531.235961  -2367.385552  -2707.768224 
##            82            83            84            85            86 
##  -3947.145460   -555.505627   2298.428228   3751.519424    471.843078 
##            87            88            89            90            91 
##   -488.356169    192.712649   4298.806000  -1160.409380   1151.741149 
##            92            93            94            95            96 
##  -2062.217661  -1044.804502    175.917762    273.611400  -7484.660411 
##            97            98            99           100           101 
##   2382.184553  -8607.787939  -2955.433266  -4055.694341  -1755.453702 
##           102           103           104           105           106 
##  -1279.448625   3163.919097  -2352.891564   2581.867151  -1165.755439 
##           107           108           109           110           111 
##    962.754743   2581.644077  -3155.923954  -4728.107990   -860.253506 
##           112           113           114           115           116 
##   1893.916616  11687.588051  -1233.545077   2675.025723   4271.877823 
##           117           118           119           120           121 
##   3515.894937  -1083.979993  -4703.550006  -3718.472611   2320.350407 
##           122           123           124           125           126 
##  -1729.156725   1341.547106   8861.019239    860.437936    143.291403 
##           127           128           129           130           131 
##  -2509.724727   2662.252251   7062.181309   1029.600306  -8483.032225 
##           132           133           134           135           136 
##   1753.315863   4141.356790  -3153.705405  -1414.494987   -850.995238 
##           137           138           139           140           141 
##  -3878.303822   1179.970927   -496.593439  -2915.050058   1713.499079 
##           142           143           144           145           146 
##  -1882.954802  -7833.103820   2026.773559  -3488.227695   2090.654972 
##           147           148           149           150           151 
##   -264.993552   1016.191755   -363.994586   1347.703870   1184.389787 
##           152           153           154           155           156 
##   3356.101240  -4858.091969  -1177.046045  -3239.399671   5949.752457 
##           157           158           159           160           161 
##   9747.825271  -3713.744174  -5062.276674   3316.690002    -85.539362 
##           162           163           164           165           166 
##   2417.755100  -6184.612174  -7027.613664   3870.375736  17112.780802 
##           167           168           169           170           171 
##   3361.140378   -663.938849  -2713.525834  -1375.206687   3317.468953 
##           172           173           174           175           176 
##   -499.222285  -8347.841642   2583.548821   4047.494578    350.492418 
##           177           178           179           180           181 
##   8474.913633  -9518.216267  -3750.439318 -11026.594138 -11530.704590 
##           182           183           184           185           186 
##    936.467463   8997.854816  -1717.001918   5640.658906   6271.000585 
##           187           188           189           190           191 
##  12876.037211   8152.571906  -4342.219206   2177.449202  10077.803971 
##           192           193           194           195           196 
##  -1933.862307  -2740.301173 -10581.002900  -6670.767186    922.826137 
##           197           198           199           200           201 
##  -5542.728903 -10106.946719   5070.032354  -3376.646046  -2020.462076 
##           202           203           204           205           206 
##  -1111.263853   6188.215759   9577.537665    274.297218   2618.704529 
##           207           208           209           210           211 
##   2791.263773   5477.186306  12526.835854  -5992.062832 -11604.052979 
##           212           213           214           215           216 
##  -5977.796945 -10899.375932  -5388.397444   1214.750036 -13319.557768 
##           217           218           219           220           221 
##  16079.050675   7504.886112   1224.749709  26384.004306  12223.862890 
##           222           223           224           225           226 
##   7030.421123  13719.444461  -4222.088812  -2053.307001   3462.948923 
##           227           228           229           230           231 
##     45.689078   2432.095175   8692.229661   5522.254926  -2210.340621 
##           232           233           234           235           236 
##  -2131.915407   9121.617776 -11810.240330  -7589.055240  -8848.798045 
##           237           238           239           240           241 
## -10410.920441   2766.647269   1043.740977  -8603.716322  -9296.917039 
##           242           243           244           245           246 
##   8786.977592  -8069.635717   2182.287434 -10604.700275  -4358.709005 
##           247           248           249           250           251 
##   1118.258493    699.658326 -12618.769884   3338.873555   1759.067489 
##           252           253           254           255           256 
##   3908.495253   1831.282641  -1464.829526  10833.735688  20573.816162 
##           257           258           259           260           261 
##   2884.595402  -4588.093112   3789.998674  -2016.308455   3414.075030 
##           262           263           264           265           266 
##  -5176.151937 -11218.434763  -5052.703345   -844.817486  -5510.704388 
##           267           268           269           270           271 
##   8456.471741  -4604.039091   3865.542139  -2432.524428   4104.782561 
##           272           273           274           275           276 
##    380.854295   6973.456192  -1745.345319  11690.613904  -4925.894228 
##           277           278           279           280           281 
##   1382.908684   -716.744355   7506.328674  -5406.944121  -3077.909101 
##           282           283           284           285           286 
## -11605.347570  -3004.689836  18322.907493   7440.474086   2385.311046 
##           287           288           289           290           291 
##   -979.827851    554.962602   6046.571270   6526.245662 -19133.312242 
##           292           293           294           295           296 
## -11481.637509  -8450.517629   9346.862334   2748.070667  -1504.401613 
##           297           298           299           300           301 
##  27078.798203   9715.494983   4541.048504   9154.139387   2484.714107 
##           302           303           304           305           306 
##  -1404.877836   7527.865884 -24669.075287  -3876.034924   -507.915298 
##           307           308           309           310           311 
##  -7296.619662  -4288.170167   2624.117772  -9500.911250  -3524.303702 
##           312           313           314           315           316 
##  -8473.398616   1291.266987  -3426.190987   1777.551780  -4356.919673 
##           317           318           319           320           321 
##  27174.826495  -1053.985183   2961.008828  10494.949728   5238.609619 
##           322           323           324           325           326 
##  32023.656352   4713.272607 -21334.200567   1432.514541    752.896348 
##           327           328           329           330           331 
##  -6819.400770  -2074.377556 -33600.955136    638.470880  -2541.843739 
##           332           333           334           335           336 
##   -325.167567  -3397.092357   3863.054444   -666.258740  -7180.953740 
##           337           338           339           340           341 
##  -3333.093102  -2403.384150  -7888.481327   3654.647560  -1578.258104 
##           342           343           344           345           346 
##  -1945.071777  -1200.662737    -31.069340    270.694222  -1833.567774 
##           347           348           349           350           351 
##  -9662.073942 -13411.956003   2128.072678  -4514.547766  -3846.098992 
##           352           353           354           355           356 
##  -6165.175757   1571.894975   1195.885239   2555.451137  -3976.384298 
##           357           358           359           360           361 
##   -724.663451    464.436517   6794.047135     37.223640   -281.901090 
##           362           363           364           365           366 
##   2336.369245  -3004.946243  -1126.992311  -8991.577428  -4853.856735 
##           367           368           369           370           371 
##  -6430.139607  -5154.162956  -7448.144907   4832.592424    170.687297 
##           372           373           374           375           376 
##   6913.243096  -7864.639181  -2475.743294  -3597.946186  -2671.711411 
##           377           378           379           380           381 
## -12659.285400   1726.748357 -10820.466148   5529.393105   9147.913411 
##           382           383           384           385           386 
##   2907.726206  -2630.389219   1374.349948   6505.413058  11150.635324 
##           387           388           389           390           391 
##  -6095.888944  -5647.178885   -432.003149   8286.855942   1514.471579 
##           392           393           394           395           396 
##  10915.236123 -10215.415215   2460.759986    392.008956    240.563894 
##           397           398           399           400           401 
##   -976.002120   -882.263501 -14803.463967   8252.096727  -1468.515574 
##           402           403           404           405           406 
##  -1653.450309   6707.199247  -8224.293154  -1563.427419  -2790.898226 
##           407           408           409           410           411 
##  -6067.958562  -3088.449279  -4136.851976  -8963.672680   5948.364330 
##           412           413           414           415           416 
##   1434.072300  -7588.108783  -7889.031173  14042.139718   3587.949564 
##           417           418           419           420           421 
##   4245.443843  -8300.739642  -4987.004804  -2829.982022   2598.331465 
##           422           423           424           425           426 
## -14241.850808  -2983.408421  -9285.333668   2848.853626   6798.302522 
##           427           428           429           430           431 
##   6369.639700  -4217.963335  -4342.596442  -4934.429123  -1990.907508 
##           432           433           434           435           436 
##  -5911.358670  -6813.659905  -6122.611351  -1555.327398  -1012.588680 
##           437           438           439           440           441 
##  -5144.274976   2419.687305   4662.730107  -5254.016113  -2346.417492 
##           442           443           444           445           446 
##   1388.986117  -4034.224059   2644.589908  -6781.945239 -12300.069152 
##           447           448           449           450           451 
##  -4672.778657   9489.801512  -2219.579601   4567.970852  -6072.910961 
##           452           453           454           455           456 
##  -1313.408084    192.448914   2830.238699 -12475.865929   3190.517123 
##           457           458           459           460           461 
##  -6893.040099   6343.840045   2812.550128   2296.256227  -4065.517876 
##           462           463           464           465           466 
##   1881.178491   -226.402778   1572.277928   -748.047665   3123.817028 
##           467           468           469           470           471 
##  -2875.387310   5576.067145  -7185.754768  -3187.839774  -2419.873811 
##           472           473           474           475           476 
##  -4871.950926   2800.116087   7591.973206  -6243.447441   1273.542629 
##           477           478           479           480           481 
##  -6393.600169  -3043.683666   1818.739458 -13129.770432  -9925.923898 
##           482           483           484           485           486 
##  -1354.302238   -134.504908  -1122.604831  -1505.282107  -9750.118848 
##           487           488           489           490           491 
##  10946.917739   6054.539963   7220.690466  -5656.636466   5159.138130 
##           492           493           494           495           496 
##   9070.214748   5807.924498 -13733.155237 -10790.480539  -3639.336078 
##           497           498           499           500           501 
##  -1296.406995   -713.551515  -7815.441411    438.267049   4111.024698 
##           502           503           504           505           506 
##   5319.428745    456.273748   -126.072981  -7446.518117    378.865645 
##           507           508           509           510           511 
##  -5242.118085   1649.120691  -1486.120736  -8346.310411   -773.906312 
##           512           513           514           515           516 
##  -2848.073192   -758.383343   1159.451011  -9674.340843  -7926.226226 
##           517           518           519           520           521 
##  24138.096468   9616.130175   5645.989447  -5582.634426   2564.662746 
##           522           523           524           525           526 
##  16779.320498  11195.013408 -24450.963477  -5300.624419  -3960.430341 
##           527           528           529           530           531 
##   4354.704706   -584.738678 -11329.314185   4191.189724  13698.275453 
##           532           533           534           535           536 
##  -5221.118436   4141.720019   5312.856423  -2044.790684  -4789.257039 
##           537           538           539           540           541 
##  -7309.619773  -2317.610950   8111.343567   -102.985198  -8370.816236 
##           542           543           544           545           546 
##   1606.740528   -812.931698    154.501075 -11243.442926 -11248.762703 
##           547           548           549           550           551 
##   1877.154104   6831.715324  -1508.582926    647.089382  -7914.385475 
##           552           553           554           555           556 
##   8387.204645    706.502996 -12148.132844   8983.970497   8454.421123 
##           557           558           559           560           561 
##   -126.898435   4626.046918  -3813.354387  13877.992271  21234.884316 
##           562           563           564           565           566 
##  -6779.295884  -9973.136232   6509.954612    -51.627975   3180.378919 
##           567           568           569           570           571 
##  -7655.402698 -17563.379173   6453.509066   6212.459210   1667.741564 
##           572           573           574           575           576 
##   2862.252852   1529.690047  -2406.222273  14483.800788  -9914.556221 
##           577           578           579           580           581 
##  -6485.196517   8486.995740   2615.419943  -6792.647366   7279.524962 
##           582           583           584           585           586 
##  -4044.481914  -3008.715629  15478.081708 -14758.108366   8204.892156 
##           587           588           589           590           591 
##   -170.357441  -6450.306438   -974.794817     35.289289 -10868.592441 
##           592           593           594           595           596 
##   1607.147558  -7338.069261   2890.042782   8680.731909  -7707.122895 
##           597           598           599           600           601 
##   5661.507121   2530.912161   6645.432743  -3415.435922   5932.792342 
##           602           603           604           605           606 
##  -8527.541861   2046.728222   1057.501228   2924.302529   1275.809680 
##           607           608           609           610           611 
##    176.678210  -6030.016614   7870.035963  -1404.582284  -2789.806168 
##           612           613           614           615           616 
##  -3660.899338  -8426.320888  11779.454431   4731.959458  -9527.911071 
##           617           618           619           620           621 
##  11434.434527   5834.580117  -5798.327244  26149.722253 -13084.079387 
##           622           623           624           625           626 
##  -7004.225113   2950.856831  -4369.156234 -10791.164865  11120.097775 
##           627           628           629           630           631 
## -21833.646790  -2571.383468   8521.516865  10963.774301  -1745.750685 
##           632           633           634           635           636 
##  33094.911336  -6836.660660   5485.565792   5161.544539  -2510.940996 
##           637           638           639           640           641 
##  -5577.678337  -2157.860397 -12641.604798  -2427.811174  -2066.792297 
##           642           643           644           645           646 
##  -2697.027079  -3030.104762   1647.727047   4259.572070  16785.017697 
##           647           648           649           650           651 
##  18342.796147    641.567481   4549.582284  10368.109900  19893.745434 
##           652           653           654           655           656 
##    464.065659 -28333.243277  -1553.465911  -2494.545462   1674.824871 
##           657           658           659           660           661 
##  -3382.853114 -10802.648368   1503.345809   4064.384284  -1173.299821 
##           662           663           664           665           666 
##  12868.740740   1179.869331   1633.460693 -11871.169588   1216.785020 
##           667           668           669           670           671 
##   1024.640682  -5328.533340  -7564.081885   1923.586711  -3856.634642 
##           672           673           674           675           676 
##   2533.298288  -3522.444972  -9476.392038  -8437.158271  -3103.994543 
##           677           678           679           680           681 
##     45.355718   2716.292482    577.161127  -3965.017080  -1944.769084 
##           682           683           684           685           686 
##  -1454.614765  -8379.305988   4517.398250  -2380.185892  -1535.625115 
##           687           688           689           690           691 
##    449.735727  10713.916303   9699.475654  10465.812167  -9826.512209 
##           692           693           694           695           696 
##  -3705.398115  -3286.512706   5727.641230 -10532.647841  -8049.269704 
##           697           698           699           700           701 
##  -8743.107109  -6401.402228  -4864.198363   2957.682046  -4530.474255 
##           702           703           704           705           706 
##  -2026.011927   4093.664148  30974.540402   9397.167884  23332.094826 
##           707           708           709           710           711 
##   1591.297416   8238.755959  22845.983090   6510.642673 -18245.589640 
##           712           713           714           715           716 
##   4764.563807  -5497.496447   -162.199807    415.526078 -17332.874431 
##           717           718           719           720           721 
##  -5349.688485   3244.177445  -3100.229935 -13067.859676   4178.343053 
##           722           723           724           725           726 
##  -5651.590728    642.878541  -4031.966988 -12547.004041   1257.552878 
##           727           728           729           730           731 
##  -1972.964970  -9882.919649  17156.425291   1682.223108  -2813.401254 
##           732           733           734           735           736 
##   5622.427947  -8717.126243   -818.151703   8043.891010 -15437.210182 
##           737           738           739           740           741 
##  -6011.458171   7303.684947  -4879.893822     61.838164   1730.266725 
##           742           743           744           745           746 
##  -2050.367488  -5263.562594   6313.189423  -6366.827234  22601.463140 
##           747           748           749           750           751 
##   7753.508613  -2014.144246  -7359.424833  23336.411480  -4347.269997 
##           752           753           754           755           756 
##   1333.242198 -14485.809053  56028.309933  26905.278765  15107.575924 
##           757           758           759           760           761 
## -10622.736161  10609.275612   7322.417005   5818.234998 -46381.466389 
##           762           763           764           765           766 
## -16226.383948    890.454142  -2590.960536  -3533.270613 122765.632794 
##           767           768           769           770           771 
##  19400.561723  43819.348049  22727.141690  12225.564044  15988.439143 
##           772           773           774           775           776 
##  25866.382156 -98658.214757  -6769.484563 -35859.234264   1655.880289 
##           777           778           779           780           781 
##  -1304.886962   3320.472765  -7483.456096  -1522.613155  -2022.373764 
##           782           783           784           785           786 
##   3347.103052  -7225.092469  -2314.887783   3840.992427   2195.377586 
##           787           788           789           790           791 
##  -2823.783041  -4114.488345   1667.935664   2787.200667   -111.818316 
##           792           793           794           795           796 
##  -6762.770763  -5850.367618  -1221.475186  -1336.308863  -7889.785325 
##           797           798           799           800           801 
##  -2435.137189  -3349.358238  -2748.006454  10641.620695   2177.233362 
##           802           803           804           805           806 
##   7020.257929   2874.899580  -5493.051905   8134.354443   9833.297182 
##           807           808           809           810           811 
## -10630.808802  -7442.207685  -7561.552632   2940.015680   4134.520069 
##           812           813           814           815           816 
##  -2322.293913 -14220.355101  -4184.628208   6182.822326   8172.250515 
##           817           818           819           820           821 
##  -9724.798519  -7814.388213  -9409.157991   9671.239535  -1288.408711 
##           822           823           824           825           826 
##  -4436.952376  -8516.106702   7796.521741   7849.952792   4923.739308 
##           827           828           829           830           831 
##  -3147.348192   -761.693781   2841.137026   4621.452576   1582.834611 
##           832           833           834           835           836 
##  -6734.666271   2037.962225   -446.570036   2704.077191   4094.517376 
##           837           838           839           840           841 
##  -1178.035635  -9379.188898   5619.317329  -4910.185079  -7632.839559 
##           842           843           844           845           846 
##   2958.275907 -13101.723216  -2892.291893  11554.495224   1255.124451 
##           847           848           849           850           851 
##    581.609988   -713.743696   4459.901299  12639.295553  -3720.728652 
##           852           853           854           855           856 
## -11605.528264  -1266.256454   5280.344927   7499.594869  -5875.576032 
##           857           858           859           860           861 
##  -5716.341179   1523.004797  -2314.323882   2448.932893  -2341.714870 
##           862           863           864           865           866 
##  -1869.177221  16431.363675  -2335.827713   9512.329855  15875.557144 
##           867           868           869           870           871 
##    155.372917  -2705.642866   5847.630069 -16917.654667   9060.757716 
##           872           873           874 
##   5544.581326 -10154.317320   8621.524824 
## 
## $fitted.values
##         2         3         4         5         6         7         8         9 
##  17257.76  20101.78  24351.05  24069.33  26420.09  23755.69  24471.22  19708.62 
##        10        11        12        13        14        15        16        17 
##  19445.47  16791.17  17567.77  14300.79  14351.90  15015.82  16710.52  15032.40 
##        18        19        20        21        22        23        24        25 
##  16065.92  15440.15  22514.74  21599.77  21080.20  22968.12  22294.85  22946.68 
##        26        27        28        29        30        31        32        33 
##  24790.59  18725.70  20449.94  28278.58  28336.18  28009.45  25641.49  27042.37 
##        34        35        36        37        38        39        40        41 
##  30881.15  31229.19  32636.80  30150.17  34131.88  37336.41  34395.78  31210.20 
##        42        43        44        45        46        47        48        49 
##  30059.25  20649.23  28159.62  30593.40  31681.40  38511.92  38007.06  42664.08 
##        50        51        52        53        54        55        56        57 
##  46895.65  39601.66  34176.14  29204.36  22356.39  28639.42  25223.85  21525.56 
##        58        59        60        61        62        63        64        65 
##  25929.03  27187.18  27483.86  27895.22  23770.73  40343.61  42185.53  37436.76 
##        66        67        68        69        70        71        72        73 
##  41639.04  46549.23  57205.57  55221.55  40481.11  37989.74  41004.29  35310.76 
##        74        75        76        77        78        79        80        81 
##  30768.04  21481.80  24679.73  20609.96  22693.71  17594.91  19608.10  18835.48 
##        82        83        84        85        86        87        88        89 
##  17864.29  15935.36  17211.71  20815.77  25228.59  26217.36  26242.29  26858.34 
##        90        91        92        93        94        95        96        97 
##  30978.84  29810.69  30808.93  28875.52  28076.23  28443.96  28850.09  22434.67 
##        98        99       100       101       102       103       104       105 
##  25446.36  18484.58  17341.98  15384.88  15684.31  16360.94  20828.61  19913.13 
##       106       107       108       109       110       111       112       113 
##  23420.33  23210.53  24884.78  27758.35  25259.25  21706.68  21981.80  24625.13 
##       114       115       116       117       118       119       120       121 
##  35477.55  33672.40  35507.84  38502.82  40456.55  38147.55  32974.33  29319.79 
##       122       123       124       125       126       127       128       129 
##  31400.30  29682.17  30862.41  38453.70  38096.57  37159.15  34026.18  35805.39 
##       130       131       132       133       134       135       136       137 
##  41197.26  40638.18  31849.68  33113.07  36299.28  32713.92  31103.00  30189.02 
##       138       139       140       141       142       143       144       145 
##  26749.89  28162.74  27932.62  25621.50  27643.67  26269.96  19879.23  22906.37 
##       146       147       148       149       150       151       152       153 
##  20735.49  23709.28  24248.67  25837.28  26019.15  27671.47  28970.76  31999.52 
##       154       155       156       157       158       159       160       161 
##  27474.76  26738.54  24296.53  30184.03  41734.17  40066.28  37434.17  42448.83 
##       162       163       164       165       166       167       168       169 
##  43855.82  47267.90  42738.90  38051.34  43470.50  59754.43  61964.08  60379.95 
##       170       171       172       173       174       175       176       177 
##  57209.21  55610.25  58309.79  57334.98  49635.74  52456.08  56194.51  56230.66 
##       178       179       180       181       182       183       184       185 
##  63351.50  53864.44  50619.02  41437.99  32986.82  36491.15  46583.29  46039.91 
##       186       187       188       189       190       191       192       193 
##  51986.00  57724.53  68495.43  73772.36  67474.12  67667.34  74729.72  70411.02 
##       194       195       196       197       198       199       200       201 
##  65938.86  55194.77  49231.60  50654.30  46253.95  38431.54  44849.07  43078.46 
##       202       203       204       205       206       207       208       209 
##  42716.84  43194.64  49981.03  58860.27  58490.30  60213.16  61867.10  65654.02 
##       210       211       212       213       214       215       216       217 
##  75109.92  67201.62  55403.94  50018.80  41025.25  37986.39  41096.56  31127.95 
##       218       219       220       221       222       223       224       225 
##  48082.40  55394.96  56295.85  79035.71  86522.29  88523.27  96106.09  87067.16 
##       226       227       228       229       230       231       232       233 
##  81072.34  80654.74  77308.48  76470.91  81202.60  82565.34  77007.06  72225.38 
##       234       235       236       237       238       239       240       241 
##  77872.67  64535.48  56580.94  48540.63  40161.64  44348.83  46499.14  39957.20 
##       242       243       244       245       246       247       248       249 
##  33643.88  43914.78  38168.14  42099.41  34371.99  33079.31  36730.48  39551.20 
##       250       251       252       253       254       255       256       257 
##  30390.98  36322.36  40119.50  45308.43  48023.69  47516.84  57806.18  75283.69 
##       258       259       260       261       262       263       264       265 
##  75098.95  68417.14  69897.31  66122.35  67566.87  61331.58  50618.27  46650.10 
##       266       267       268       269       270       271       272       273 
##  46859.28  42970.39  51764.61  48041.89  52183.95  50302.65  54365.43  54661.12 
##       274       275       276       277       278       279       280       281 
##  60671.77  58308.67  67970.75  61902.38  62112.17  60463.10  66199.52  59937.05 
##       282       283       284       285       286       287       288       289 
##  56504.78  46068.83  44467.38  61680.24  67204.12  67613.11  65033.61  64122.00 
##       290       291       292       293       294       295       296       297 
##  68118.47  72024.31  53042.21  43155.37  37173.14  47482.93  50721.12  49836.06 
##       298       299       300       301       302       303       304       305 
##  74005.22  79943.95  80610.86  85218.14  83418.73  78454.56  81917.50  56844.46 
##       306       307       308       309       310       311       312       313 
##  53109.77  52789.91  46587.03  43799.60  47398.91  39959.45  38682.97  33250.59 
##       314       315       316       317       318       319       320       321 
##  37030.91  36213.16  40040.35  38027.03  63784.56  61628.13  63249.91  71239.10 
##       322       323       324       325       326       327       328       329 
##  73623.77  99077.01  97456.49  73313.63  72112.82  70471.97  62432.66  59558.10 
##       330       331       332       333       334       335       336       337 
##  29539.96  33223.42  33662.45  35979.81  35321.37  41081.97  42156.38  37409.24 
##       338       339       340       341       342       343       344       345 
##  36624.53  36751.05  32075.21  38067.54  38730.21  38988.38  39863.21  41647.16 
##       346       347       348       349       350       351       352       353 
##  43467.14  43219.07  36171.53  26749.78  32088.55  30950.81  30541.32  28160.39 
##       354       355       356       357       358       359       360       361 
##  32834.11  36584.26  41042.96  39233.95  40492.85  42628.95  50016.06  50566.04 
##       362       363       364       365       366       367       368       369 
##  50767.49  53227.95  50714.14  50159.29  42812.57  40012.43  36193.59  33974.72 
##       370       371       372       373       374       375       376       377 
##  30036.84  37316.74  39601.19  47478.07  41456.31  40904.09  39443.00  38976.29 
##       378       379       380       381       382       383       384       385 
##  29853.97  34447.04  27506.32  35716.66  46038.42  49599.96  47875.22  49864.73 
##       386       387       388       389       390       391       392       393 
##  56078.08  65553.17  58771.89  53246.15  52975.14  60346.67  60869.48  69528.70 
##       394       395       396       397       398       399       400       401 
##  58646.24  60211.42  59772.01  59256.43  57744.98  56507.89  43280.90  51857.23 
##       402       403       404       405       406       407       408       409 
##  50858.74  49826.09  56220.44  48771.00  48082.90  46411.39  42093.31  40925.28 
##       410       411       412       413       414       415       416       417 
##  38991.24  33091.78  40956.07  43879.25  38557.32  33650.86  48506.48  52347.13 
##       418       419       420       421       422       423       424       425 
##  56272.17  48749.43  45076.70  43754.10  47336.71  35768.27  35497.76  29762.72 
##       426       427       428       429       430       431       432       433 
##  35346.55  43665.22  50549.96  47318.88  44390.71  41319.19  41207.50  37689.09 
##       434       435       436       437       438       439       440       441 
##  33831.61  31068.61  32643.02  34490.42  32497.17  37358.13  43557.02  40312.85 
##       442       443       444       445       446       447       448       449 
##  40019.16  43022.37  40910.70  44895.95  40147.93  31189.78  30028.48  41373.29 
##       450       451       452       453       454       455       456       457 
##  41055.17  46700.34  42341.12  42690.41  44309.19  48023.44  37908.48  42752.61 
##       458       459       460       461       462       463       464       465 
##  38180.73  45741.74  49258.03  51875.80  48608.82  50947.12  51148.44  52893.62 
##       466       467       468       469       470       471       472       473 
##  52391.75  55332.39  52663.50  57709.33  50976.41  48589.87  47177.52  43805.46 
##       474       475       476       477       478       479       480       481 
##  47557.60  55013.02  49445.89  51147.31  45941.68  44322.40  47152.34  36577.78 
##       482       483       484       485       486       487       488       489 
##  30146.16  32013.50  34707.32  36195.71  37160.55  30808.08  43325.03  49978.17 
##       490       491       492       493       494       495       496       497 
##  56801.21  51518.29  56346.21  63971.79  67779.16  54050.05  44637.91  42664.98 
##       498       499       500       501       502       503       504       505 
##  42987.84  43778.16  38270.73  40667.12  45963.00  51638.58  52347.50  52457.95 
##       506       507       508       509       510       511       512       513 
##  46166.56  47505.12  43768.31  46520.84  46186.88  39909.33  41039.22  40215.24 
##       514       515       516       517       518       519       520       521 
##  41319.69  43956.91  36804.65  32089.05  55953.30  64105.30  67754.35  61140.48 
##       522       523       524       525       526       527       528       529 
##  62478.54  76049.70  83018.96  57995.91  52871.43  49569.30  53943.60  53450.46 
##       530       531       532       533       534       535       536       537 
##  43644.52  48631.01  61277.98  55804.71  59198.72  63182.22  60237.97  55274.05 
##       538       539       540       541       542       543       544       545 
##  48743.33  47400.66  55329.27  55079.96  47647.97  49869.22  49696.07  50389.16 
##       546       547       548       549       550       551       552       553 
##  41048.19  32892.70  37229.86  45337.73  45134.91  46838.96  40855.22  49858.50 
##       554       555       556       557       558       559       560       561 
##  51012.56  40802.74  50333.44  58187.76  57553.38  61147.21  56919.01  68666.83 
##       562       563       564       565       566       567       568       569 
##  85337.44  75439.14  64015.05  68429.49  66555.91  67741.26  59320.38  43326.78 
##       570       571       572       573       574       575       576       577 
##  50327.83  56226.54  57408.03  59481.31  60127.65  57257.20  69490.56  58875.48 
##       578       579       580       581       582       583       584       585 
##  52605.29  60198.58  61700.93  54802.48  61062.20  56643.14  53690.92  67246.25 
##       586       587       588       589       590       591       592       593 
##  52690.68  60026.93  59120.31  52849.37  52155.28  52431.02  43157.00  45950.78 
##       594       595       596       597       598       599       600       601 
##  40583.10  44824.27  53577.98  46916.49  52769.09  55144.28  60807.15  56969.49 
##       602       603       604       605       606       607       608       609 
##  61777.97  53355.84  55233.78  56009.27  58314.90  58888.32  58429.59  52613.39 
##       610       611       612       613       614       615       616       617 
##  59667.30  57729.52  54829.90  51539.61  44510.26  56007.90  59891.05  50836.42 
##       618       619       620       621       622       623       624       625 
##  61226.99  65407.33  58904.28  81107.37  66246.51  58584.29  60585.01  55943.45 
##       626       627       628       629       630       631       632       633 
##  46289.47  56985.08  37562.81  37423.20  46980.94  57452.04  55498.80  84196.09 
##       634       635       636       637       638       639       640       641 
##  74393.15  76591.46  78226.94  72959.11  65686.43  62324.46  50242.81  48612.94 
##       642       643       644       645       646       647       648       649 
##  47505.74  45989.68  44376.13  47050.00  51662.27  66616.49  81024.72  78151.27 
##       650       651       652       653       654       655       656       657 
##  79054.03  84918.97  98348.65  93113.10  63416.32  60870.97  57828.75  58812.28 
##       658       659       660       661       662       663       664       665 
##  55257.22  45680.65  48062.33  52375.30  51568.40  63117.27  62995.11  63284.31 
##       666       667       668       669       670       671       672       673 
##  51752.64  53110.65  54127.96  49471.94  43458.41  46489.92  44091.42  47574.30 
##       674       675       676       677       678       679       680       681 
##  45329.25  38174.87  32838.85  32836.36  35582.28  40308.98  42566.87  40573.63 
##       682       683       684       685       686       687       688       689 
##  40597.19  41045.45  35394.17  41716.47  41214.48  41513.41  43506.66  54202.38 
##       690       691       692       693       694       695       696       697 
##  62650.19  70690.37  59999.26  56011.51  52897.36  58045.65  48349.41  42055.54 
##       698       699       700       701       702       703       704       705 
##  35958.12  32680.91  31162.60  36663.05  34928.58  35600.48  41526.75  70153.97 
##       706       707       708       709       710       711       712       713 
##  76305.62  93832.99  90156.39  92748.73 107756.93 106598.88  83986.29  84333.21 
##       714       715       716       717       718       719       720       721 
##  75681.34  72787.33  70766.16  53515.40  48918.97  52407.09  49914.72  39042.23 
##       722       723       724       725       726       727       728       729 
##  44603.88  40879.41  43121.97  40999.58  31717.45  35663.68  36288.21  29931.00 
##       730       731       732       733       734       735       736       737 
##  47978.06  50223.12  48259.29  53906.70  46322.01  46596.25  54568.50  41035.60 
##       738       739       740       741       742       743       744       745 
##  37451.74  45943.18  42721.45  44222.30  46987.80  46101.99  42525.24  49505.97 
##       746       747       748       749       750       751       752       753 
##  44532.82  65470.78  70784.86  66898.71  58843.45  78599.41  71681.76  70602.24 
##       754       755       756       757       758       759       760       761 
##  55856.69 104519.86 121570.42 126154.02 107701.58 110127.01 109375.34 107406.89 
##       762       763       764       765       766       767       768       769 
##  60140.24  45208.83  47115.82  45741.98  43720.94 152164.72 156596.37 181771.00 
##       770       771       772       773       774       775       776       777 
## 185333.29 179278.13 177277.90 184151.93  81491.06  72091.38  38505.83  41934.74 
##       778       779       780       781       782       783       784       785 
##  42343.24  46735.74  41141.18  41460.80  41303.61  45851.81  40595.32  40293.15 
##       786       787       788       789       790       791       792       793 
##  45401.05  48422.21  46678.77  44031.21  46766.66  50130.25  50535.63  45085.80 
##       794       795       796       797       798       799       800       801 
##  41126.48  41710.74  42120.36  36759.28  36840.93  36114.44  36005.24  47593.62 
##       802       803       804       805       806       807       808       809 
##  50319.60  56924.24  59070.19  53640.93  60794.56  68519.24  57402.92  50485.27 
##       810       811       812       813       814       815       816       817 
##  44344.84  48150.34  52513.29  50686.21  38709.77  37016.32  44585.18  52925.66 
##       818       819       820       821       822       823       824       825 
##  44586.67  38977.16  32690.76  43854.69  44032.95  41441.11  35620.05  44774.90 
##       826       827       828       829       830       831       832       833 
##  52809.97  57267.92  54115.12  53445.72  56005.40  59792.45  60445.52  53757.61 
##       834       835       836       837       838       839       840       841 
##  55576.71  54996.07  57238.63  60408.75  58574.19  49817.11  55263.33  50827.70 
##       842       843       844       845       846       847       848       849 
##  44581.44  48372.72  37667.15  37234.22  49462.59  51145.82  52026.89  51665.38 
##       850       851       852       853       854       855       856       857 
##  55864.42  66665.73  61815.24  50702.54  50027.66  55151.26  61558.58  55478.48 
##       858       859       860       861       862       863       864       865 
##  50312.00  52120.75  50350.64  52962.43  51061.18  49814.49  64695.54  61304.53 
##       866       867       868       869       870       871       872       873 
##  68684.16  80676.06  77422.79  72087.51  74895.51  57480.96  64953.70  68406.17 
##       874 
##  57720.05 
## 
## $shapiro.test
## [1] 0
## 
## $levenes.test
## [1] 0
## 
## $autcorr
## [1] "No autocorrelation evidence"
## 
## $post_sums
## [1] "Post-Est Warning"
## 
## $adjr_sq
## [1] 0.8086
## 
## $fstat.bootstrap
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot::boot(data = x, statistic = f.stat, R = Reps, formula = depvar ~ 
##     ., parallel = parr)
## 
## 
## Bootstrap Statistics :
##        original      bias    std. error
## t1*    5.521714   0.8041206    4.131249
## t2* 2767.526694 164.2502787  894.962471
## WARNING: All values of t3* are NA
## 
## $itsa.plot
## 
## $booted.ints
##       Parameter   Lower CI Median F-value   Upper CI
## 1 interrupt_var    1.28572       5.514956   14.23204
## 2    lag_depvar 1693.49828    2809.617667 4578.98936

Ahora con las tendencias descompuestas

require(zoo)
require(scales)
Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha2=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(gastador=ifelse(gastador=="Andrés",1,0)) %>%
    dplyr::mutate(treat=ifelse(fecha2>"2019-W26",1,0)) %>% 
    dplyr::mutate(gasto= dplyr::case_when(gasto=="Gas"~"Gas/Bencina",
                  gasto=="aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  gasto=="Tina"~"Electrodomésticos/mantención casa",
                  gasto=="Nexium"~"Farmacia",
                  gasto=="donaciones"~"Donaciones/regalos",
                  gasto=="Regalo chocolates"~"Donaciones/regalos",
                  gasto=="filtro piscina msp"~"Electrodomésticos/mantención casa",
                  gasto=="Chromecast"~"Electrodomésticos/mantención casa",
                  gasto=="Muebles ratan"~"Electrodomésticos/mantención casa",
                  gasto=="Vacuna Influenza"~"Farmacia",
                  gasto=="Easy"~"Electrodomésticos/mantención casa",
                  gasto=="Sopapo"~"Electrodomésticos/mantención casa",
                  gasto=="filtro agua"~"Electrodomésticos/mantención casa",
                  gasto=="ropa tami"~"Donaciones/regalos",
                  gasto=="yaz"~"Farmacia",
                  gasto=="Yaz"~"Farmacia",
                  gasto=="Remedio"~"Farmacia",
                  gasto=="Entel"~"VTR",
                  gasto=="Kerosen"~"Gas/Bencina",
                  gasto=="Parafina"~"Gas/Bencina",
                  gasto=="Plata basurero"~"Donaciones/regalos",
                  gasto=="Matri Andrés Kogan"~"Donaciones/regalos",
                  gasto=="Wild Protein"~"Comida",
                  gasto=="Granola Wild Foods"~"Comida",
                  gasto=="uber"~"Transporte",
                  gasto=="Uber Reñaca"~"Transporte",
                  gasto=="filtro piscina mspa"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza Alfombra"~"Electrodomésticos/mantención casa",
                  gasto=="Aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza alfombras"~"Electrodomésticos/mantención casa",
                  gasto=="Pila estufa"~"Electrodomésticos/mantención casa",
                  gasto=="Reloj"~"Electrodomésticos/mantención casa",
                  gasto=="Arreglo"~"Electrodomésticos/mantención casa",
                  gasto=="Pan Pepperino"~"Comida",
                  gasto=="Cookidoo"~"Comida",
                  gasto=="remedios"~"Farmacia",
                  gasto=="Bendina Reñaca"~"Gas/Bencina",
                  gasto=="Bencina Reñaca"~"Gas/Bencina",
                  gasto=="Vacunas Influenza"~"Farmacia",
                  gasto=="Remedios"~"Farmacia",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  #2024
                  gasto=="cartero"~"Correo",
                  gasto=="correo"~"Correo",
                  gasto=="Gaviscón y Paracetamol"~"Farmacia",
                  gasto=="Regalo Matri Cony"~"Donaciones/regalos",
                  gasto=="Regalo Matri Chepa"~"Donaciones/regalos",
                  gasto=="Aporte Basureros"~"Donaciones/regalos",
                  gasto=="donación"~"Donaciones/regalos",
                  gasto=="Plata Reciclaje y Basurero"~"Donaciones/regalos",
                  gasto=="basureros"~"Donaciones/regalos",
                  gasto=="Microondas regalo"~"Donaciones/regalos",
                  gasto=="Cruz Verde"~"Farmacia",
                  gasto=="Remedios Covid"~"Farmacia",      
                  gasto=="nacho"~"Electrodomésticos/mantención casa",
                  gasto=="Jardinero"~"Electrodomésticos/mantención casa",
                  gasto=="mantencion toyotomi"~"Electrodomésticos/mantención casa",
                  gasto=="Cámaras Seguridad M.Barrios"~"Electrodomésticos/mantención casa",      
                  gasto=="Uber cumple papá"~"Transporte",
                  gasto=="Uber"~"Transporte",
                  gasto=="Uber Matri Cony"~"Transporte",
                  gasto=="Bencina + tag"~"Gas/Bencina",
                  gasto=="Bencina + Tag cumple Delox"~"Gas/Bencina",
                  gasto=="Bencina + peajes Maite"~"Gas/Bencina",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Incoludido"~"Enceres",
                  gasto=="Cortina baño"~"Electrodomésticos/mantención casa",
                  gasto=="Forro cortina ducha"~"Electrodomésticos/mantención casa",
                  gasto=="Brussels"~"Comida",
                  gasto=="Tres toques"~"Enceres",
                  gasto=="Transferencia"~"Otros",
                  gasto=="prestamo"~"Otros",
                  gasto=="Préstamo Andrés"~"Otros",
                  gasto=="mouse"~"Otros",
                  gasto=="lamina"~"Otros",
      T~gasto)) %>% 
    dplyr::group_by(gastador, fecha,gasto, .drop=F) %>%
    #dplyr::mutate(fecha_simp=week(parse_date(fecha))) %>% 
#    dplyr::mutate(fecha_simp=tsibble::yearweek(fecha)) %>%#después de  diosi. Junio 24, 2019   
    dplyr::summarise(monto=sum(monto)) %>% 
    dplyr::mutate(gastador_nombre=plyr::revalue(as.character(gastador), c("0" = "Tami", "1"="Andrés"))) %>% 
  ggplot2::ggplot(aes(x = fecha, y = monto, color=as.factor(gastador_nombre))) +
  #stat_summary(geom = "line", fun.y = median, size = 1, alpha=0.5, aes(color="blue")) +
  geom_line(size=1) +
  facet_grid(gasto~.)+
  geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
  labs(y="Gastos (en miles)",x="Semanas y Meses", subtitle="Interlineado, incorporación de la Diosi; Azul= Tami; Rojo= Andrés") +
  ggtitle( "Figura 6. Gastos Semanales por Gastador e ítem (media)") +
  scale_y_continuous(labels = f <- function(x) paste0(x/1000)) + 
  scale_color_manual(name = "Gastador", values= c("blue", "red"), labels = c("Tami", "Andrés")) +
  scale_x_yearweek(breaks = "1 month", minor_breaks = "1 week", labels=date_format("%m/%y")) +
  guides(color = F)+
  theme_custom() +
  theme(axis.text.x = element_text(vjust = 0.5,angle = 35)) +
  theme(
    panel.border = element_blank(), 
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), 
    axis.line = element_line(colour = "black")
    )

# Apply MSTL decomposition
mstl_data_autplt <- forecast::mstl(Gastos_casa$monto, lambda = "auto",iterate=5000000,start = 
lubridate::decimal_date(as.Date("2019-03-03")))

# Convert the decomposed time series to a data frame
mstl_df <- data.frame(
  Date = as.Date(Gastos_casa$fecha, format="%d/%m/%Y"),
  Data = as.numeric(mstl_data_autplt[, "Data"]),
  Trend = as.numeric(mstl_data_autplt[, "Trend"]),
  Remainder = as.numeric(mstl_data_autplt[, "Remainder"])
)

# Reshape the data frame for ggplot2
mstl_long <- mstl_df %>%
  pivot_longer(cols = -Date, names_to = "Component", values_to = "Value")

# Plotting with ggplot2
ggplot(mstl_long, aes(x = Date, y = Value)) +
  geom_line() +
  theme_bw() + 
  labs(title = "Descomposición MSTL", x = "Fecha", y = "Valor") +
  scale_x_date(date_breaks = "3 months", date_labels = "%m-%Y") +
  facet_wrap(~ Component, scales = "free_y", ncol = 1) +
  theme(strip.text = element_text(size = 12),
        axis.text.x = element_text(angle = 90, hjust = 1))

ts_week_covid<-  
Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::group_by(fecha_week)%>%
    dplyr::summarise(gasto_total=sum(monto,na.rm=T)/1000,min_day=min(day))%>%
    dplyr::ungroup() %>% 
    dplyr::mutate(covid=dplyr::case_when(min_day>=as.Date("2020-03-17")~1,TRUE~0))%>%
    dplyr::mutate(covid=as.factor(covid))%>%
    data.frame()


ts_week_covid$gasto_total_na<-ts_week_covid$gasto_total
post_resp<-ts_week_covid$gasto_total[which(ts_week_covid$covid==1)]
ts_week_covid$gasto_total_na[which(ts_week_covid$covid==1)]<-NA
ts_week_covid$gasto_total[which(ts_week_covid$covid==0)]
##  [1]  98.357   4.780  56.784  50.506  64.483  67.248  49.299  35.786  58.503
## [10]  64.083  20.148  73.476 127.004  81.551  69.599 134.446  58.936  26.145
## [19] 129.927 104.989 130.860  81.893  95.697  64.579 303.471 151.106  49.275
## [28]  76.293  33.940  83.071 119.512  20.942  58.055  71.728  44.090  33.740
## [37]  59.264  77.410  60.831  63.376  48.754 235.284  29.604 115.143  72.419
## [46]   5.980  80.063 149.178  69.918 107.601  72.724  63.203  99.681 130.309
## [55] 195.898 112.066
corpus <- Corpus(VectorSource(Gastos_casa$obs)) # formato de texto
d  <- tm_map(corpus, tolower)
d  <- tm_map(d, stripWhitespace)
d <- tm_map(d, removePunctuation)
d <- tm_map(d, removeNumbers)
d <- tm_map(d, removeWords, stopwords("spanish"))
d <- tm_map(d, removeWords, "menos")
tdm <- TermDocumentMatrix(d)
m <- as.matrix(tdm) #lo vuelve una matriz
v <- sort(rowSums(m),decreasing=TRUE) #lo ordena y suma
df <- data.frame(word = names(v),freq=v) # lo nombra y le da formato de data.frame
#findFreqTerms(tdm)
#require(devtools)
#install_github("lchiffon/wordcloud2")
#wordcloud2::wordcloud2(v, size=1.2)
wordcloud(words = df$word, freq = df$freq, 
          max.words=100, random.order=FALSE, rot.per=0.35, 
          colors=brewer.pal(8, "Dark2"), main="Figura 7. Nube de Palabras, Observaciones")

fit_month_gasto <- Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_month=strftime(fecha, format = "%Y-%m")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::mutate(gasto2= dplyr::case_when(gasto=="Gas"~"Gas/Bencina",
                  gasto=="aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  gasto=="Tina"~"Electrodomésticos/mantención casa",
                  gasto=="Nexium"~"Farmacia",
                  gasto=="donaciones"~"Donaciones/regalos",
                  gasto=="Regalo chocolates"~"Donaciones/regalos",
                  gasto=="filtro piscina msp"~"Electrodomésticos/mantención casa",
                  gasto=="Chromecast"~"Electrodomésticos/mantención casa",
                  gasto=="Muebles ratan"~"Electrodomésticos/mantención casa",
                  gasto=="Vacuna Influenza"~"Farmacia",
                  gasto=="Easy"~"Electrodomésticos/mantención casa",
                  gasto=="Sopapo"~"Electrodomésticos/mantención casa",
                  gasto=="filtro agua"~"Electrodomésticos/mantención casa",
                  gasto=="ropa tami"~"Donaciones/regalos",
                  gasto=="yaz"~"Farmacia",
                  gasto=="Yaz"~"Farmacia",
                  gasto=="Remedio"~"Farmacia",
                  gasto=="Entel"~"VTR",
                  gasto=="Kerosen"~"Gas/Bencina",
                  gasto=="Parafina"~"Gas/Bencina",
                  gasto=="Plata basurero"~"Donaciones/regalos",
                  gasto=="Matri Andrés Kogan"~"Donaciones/regalos",
                  gasto=="Wild Protein"~"Comida",
                  gasto=="Granola Wild Foods"~"Comida",
                  gasto=="uber"~"Transporte",
                  gasto=="Uber Reñaca"~"Transporte",
                  gasto=="filtro piscina mspa"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza Alfombra"~"Electrodomésticos/mantención casa",
                  gasto=="Aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza alfombras"~"Electrodomésticos/mantención casa",
                  gasto=="Pila estufa"~"Electrodomésticos/mantención casa",
                  gasto=="Reloj"~"Electrodomésticos/mantención casa",
                  gasto=="Arreglo"~"Electrodomésticos/mantención casa",
                  gasto=="Pan Pepperino"~"Comida",
                  gasto=="Cookidoo"~"Comida",
                  gasto=="remedios"~"Farmacia",
                  gasto=="Bendina Reñaca"~"Gas/Bencina",
                  gasto=="Bencina Reñaca"~"Gas/Bencina",
                  gasto=="Vacunas Influenza"~"Farmacia",
                  gasto=="Remedios"~"Farmacia",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  #2024
                  gasto=="cartero"~"Correo",
                  gasto=="correo"~"Correo",
                  gasto=="Gaviscón y Paracetamol"~"Farmacia",
                  gasto=="Regalo Matri Cony"~"Donaciones/regalos",
                  gasto=="Regalo Matri Chepa"~"Donaciones/regalos",
                  gasto=="Aporte Basureros"~"Donaciones/regalos",
                  gasto=="donación"~"Donaciones/regalos",
                  gasto=="Plata Reciclaje y Basurero"~"Donaciones/regalos",
                  gasto=="basureros"~"Donaciones/regalos",
                  gasto=="Microondas regalo"~"Donaciones/regalos",
                  gasto=="Cruz Verde"~"Farmacia",
                  gasto=="Remedios Covid"~"Farmacia",      
                  gasto=="nacho"~"Electrodomésticos/mantención casa",
                  gasto=="Jardinero"~"Electrodomésticos/mantención casa",
                  gasto=="mantencion toyotomi"~"Electrodomésticos/mantención casa",
                  gasto=="Cámaras Seguridad M.Barrios"~"Electrodomésticos/mantención casa",      
                  gasto=="Uber cumple papá"~"Transporte",
                  gasto=="Uber"~"Transporte",
                  gasto=="Uber Matri Cony"~"Transporte",
                  gasto=="Bencina + tag"~"Gas/Bencina",
                  gasto=="Bencina + Tag cumple Delox"~"Gas/Bencina",
                  gasto=="Bencina + peajes Maite"~"Gas/Bencina",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Incoludido"~"Enceres",
                  gasto=="Cortina baño"~"Electrodomésticos/mantención casa",
                  gasto=="Forro cortina ducha"~"Electrodomésticos/mantención casa",
                  gasto=="Brussels"~"Comida",
                  gasto=="Tres toques"~"Enceres",
                  gasto=="Transferencia"~"Otros",
                  gasto=="prestamo"~"Otros",
                  gasto=="Préstamo Andrés"~"Otros",
                  gasto=="mouse"~"Otros",
                  gasto=="lamina"~"Otros",
      T~gasto)) %>% 
  dplyr::mutate(fecha_month=factor(fecha_month, levels=format(seq(from = as.Date("2019-03-03"), to = as.Date(substr(Sys.time(),1,10)), by = "1 month"),"%Y-%m")))%>% 
  dplyr::mutate(gasto2=factor(gasto2, levels=c("Agua", "Comida", "Comunicaciones","Electricidad", "Enceres", "Farmacia", "Gas/Bencina", "Diosi", "donaciones/regalos", "Electrodomésticos/ Mantención casa", "VTR", "Netflix", "Otros")))%>% 
    dplyr::group_by(fecha_month, gasto2, .drop=F)%>%
    dplyr::summarise(gasto_total=sum(monto, na.rm = T)/1000)%>%
  data.frame() %>% na.omit()

fit_month_gasto_25<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2025",fecha_month)) %>% 
    #sacar el ultimo mes
    dplyr::filter(as.character(format(as.Date(substr(Sys.time(),1,10)),"%Y-%m"))!=fecha_month) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_24<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2024",fecha_month)) %>% 
    #sacar el ultimo mes
    dplyr::filter(as.character(format(as.Date(substr(Sys.time(),1,10)),"%Y-%m"))!=fecha_month) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_23<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2023",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_22<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2022",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_21<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2021",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()


fit_month_gasto_20<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2020",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame() %>% ungroup()

fit_month_gasto_25 %>% 
dplyr::right_join(fit_month_gasto_24,by="gasto2") %>%
dplyr::right_join(fit_month_gasto_23,by="gasto2") %>%
dplyr::right_join(fit_month_gasto_22,by="gasto2") %>%
dplyr::right_join(fit_month_gasto_21,by="gasto2") %>% 
dplyr::right_join(fit_month_gasto_20,by="gasto2") %>% 
  janitor::adorn_totals() %>% 
  #dplyr::select(-3)%>% 
  knitr::kable(format = "markdown", size=12, col.names= c("Item","2025","2024","2023","2022","2021","2020"))
Item 2025 2024 2023 2022 2021 2020
Agua 6.382333 6.993667 5.195333 5.410333 5.849167 9.93775
Comida 234.753000 326.890000 366.009167 312.386750 317.896583 392.93367
Comunicaciones 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000
Electricidad 49.655556 83.582750 38.104750 47.072333 29.523000 20.60458
Enceres 2.964444 23.989000 18.259750 24.219750 14.801167 39.01200
Farmacia 0.000000 0.000000 10.704083 2.835000 13.996083 14.03675
Gas/Bencina 38.538889 44.292667 42.636000 45.575000 13.583667 17.25833
Diosi 20.275444 33.319583 55.804250 31.180667 52.687833 37.12133
donaciones/regalos 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000
Electrodomésticos/ Mantención casa 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000
VTR 17.108889 18.326667 12.829167 25.156667 19.086917 19.11375
Netflix 0.000000 1.391417 8.713833 7.151583 7.028750 8.24725
Otros 0.000000 76.164000 5.481667 5.000000 0.000000 0.00000
Total 369.678556 614.949750 563.738000 505.988083 474.453167 558.26542
## Joining with `by = join_by(word)`


2. UF Proyectada

Saqué la UF proyectada

#options(max.print=5000)

uf18 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2018.htm")%>% rvest::html_nodes("table")
uf19 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2019.htm")%>% rvest::html_nodes("table")
uf20 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2020.htm")%>% rvest::html_nodes("table")
uf21 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2021.htm")%>% rvest::html_nodes("table")
uf22 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2022.htm")%>% rvest::html_nodes("table")
uf23 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2023.htm")%>% rvest::html_nodes("table")
uf24 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2024.htm")%>% rvest::html_nodes("table")

tryCatch(uf25 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2025.htm")%>% rvest::html_nodes("table"),
    error = function(c) {
      uf24b <<- cbind.data.frame(Día=NA, variable=NA, value=NA)
      
    }
  )

tryCatch(uf25 <-uf25[[length(uf25)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1),
    error = function(c) {
      uf25 <<- cbind.data.frame(Día=NA, variable=NA, value=NA)
    }
)

uf_serie<-
bind_rows(
cbind.data.frame(anio= 2018, uf18[[length(uf18)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2019, uf19[[length(uf19)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2020, uf20[[length(uf20)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2021, uf21[[length(uf21)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2022, uf22[[length(uf22)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2023, uf23[[length(uf23)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2024, uf23[[length(uf24)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),
cbind.data.frame(anio= 2025, uf25)
)

uf_serie_corrected<-
uf_serie %>% 
dplyr::mutate(month=plyr::revalue(tolower(.[[3]]),c("ene" = 1, "feb"=2, "mar"=3, "abr"=4, "may"=5, "jun"=6, "jul"=7, "ago"=8, "sep"=9, "oct"=10, "nov"=11, "dic"=12))) %>% 
  dplyr::mutate(value=stringr::str_trim(value), value= sub("\\.","",value),value= as.numeric(sub("\\,",".",value))) %>% 
  dplyr::mutate(date=paste0(sprintf("%02d", .[[2]])," ",sprintf("%02d",as.numeric(month)),", ",.[[1]]), date3=lubridate::parse_date_time(date,c("%d %m, %Y"),exact=T),date2=date3) %>% 
   na.omit()#%>%  dplyr::filter(is.na(date3))
## Warning: There was 1 warning in `dplyr::mutate()`.
## i In argument: `date3 = lubridate::parse_date_time(date, c("%d %m, %Y"), exact
##   = T)`.
## Caused by warning:
## !  54 failed to parse.
#Day of the month as decimal number (1–31), with a leading space for a single-digit number.
#Abbreviated month name in the current locale on this platform. (Also matches full name on input: in some locales there are no abbreviations of names.)

warning(paste0("number of observations:",nrow(uf_serie_corrected),",  min uf: ",min(uf_serie_corrected$value),",  min date: ",min(uf_serie_corrected $date3 )))
## Warning: number of observations:2869, min uf: 26799.01, min date: 2018-01-01
# 
# uf_proyectado <- readxl::read_excel("uf_proyectado.xlsx") %>% dplyr::arrange(Período) %>% 
#   dplyr::mutate(Período= as.Date(lubridate::parse_date_time(Período, c("%Y-%m-%d"),exact=T)))

ts_uf_proy<-
ts(data = uf_serie_corrected$value, 
   start = as.numeric(as.Date("2018-01-01")), 
   end = as.numeric(as.Date(uf_serie_corrected$date3[length(uf_serie_corrected$date3)])), frequency = 1,
   deltat = 1, ts.eps = getOption("ts.eps"))

fit_tbats <- forecast::tbats(ts_uf_proy)
    

fr_fit_tbats<-forecast::forecast(fit_tbats, h=298)
# Configurar API Key
nixtlar::nixtla_set_api_key(Sys.getenv("API_NIXTLA"))
## API key has been set for the current session.
try(nixtlar::nixtla_set_api_key(Sys.getenv("NIXTLA")))
## API key has been set for the current session.
# Preparar datos en formato requerido por TimeGPT
uf_timegpt <- uf_serie_corrected %>%
    dplyr::rename(ds = date3, y = value) %>%
    dplyr::mutate(ds = format(ds, "%Y-%m-%d")) %>%
    dplyr::mutate(unique_id = "serie_1")%>%
    dplyr::select(unique_id, ds, y)

# Realizar pronóstico con TimeGPT
timegpt_fcst <- nixtlar::nixtla_client_forecast(
  uf_timegpt,
  h = 298,               # 298 días a pronosticar
  freq = "D",            # Frecuencia diaria
  add_history = TRUE,     # Incluir datos históricos en el output
  level = c(80,95),
  model=  "timegpt-1-long-horizon", 
  clean_ex_first = TRUE
)
## The specified horizon h exceeds the model horizon. This may lead to less accurate forecasts. Please consider using a smaller horizon.
# 1. Convertir 'ds' a fecha en ambas tablas
uf_timegpt <- uf_timegpt %>% 
    mutate(ds = as.Date(ds))

timegpt_fcst <- timegpt_fcst %>% 
    mutate(ds = as.Date(ds))

# 2. Combinar los datos históricos y el pronóstico
full_data <- bind_rows(
    uf_timegpt %>% mutate(type = "Histórico"),
    timegpt_fcst %>% mutate(type = "Pronóstico")
)

# Visualizar resultados
ggplot(full_data, aes(x = ds, y = TimeGPT)) +
    # Intervalo de confianza del 95%
    geom_ribbon(aes(ymin = `TimeGPT-lo-95`, ymax = `TimeGPT-hi-95`), 
                fill = "#4B9CD3", alpha = 0.2) +
    # Intervalo de confianza del 80%
    geom_ribbon(aes(ymin = `TimeGPT-lo-80`, ymax = `TimeGPT-hi-80`), 
                fill = "#4B9CD3", alpha = 0.3) +
    # Línea histórica
    geom_line(data = filter(full_data, type == "Histórico"), 
              aes(color = "Histórico"), size = 1) +
    # Línea de pronóstico
    geom_line(data = filter(full_data, type == "Pronóstico"), 
              aes(color = "Pronóstico"), size = 1) +
    # Línea vertical separadora
    geom_vline(xintercept = max(filter(full_data, type == "Histórico")$ds), 
               linetype = "dashed", color = "red", size = 0.8) +
    # Configuración del eje x
    scale_x_date(
        date_breaks = "3 months",  # Reduce la frecuencia de las etiquetas
        date_labels = "%b %Y",  # Formato de etiquetas (mes y año)
    ) +
    # Configuración del eje y
    scale_y_continuous(labels = function(x) format(x, scientific = FALSE)) +
    # Configuración de colores
    scale_color_manual(
        name = "Leyenda",
        values = c("Histórico" = "black", "Pronóstico" = "#4B9CD3")
    ) +
    # Títulos y subtítulos
    labs(
        title = "Pronóstico de Serie Temporal con TimeGPT",
        subtitle = "Intervalos de confianza al 80% (más oscuro) y 95% (más claro)",
        x = "Fecha",
        y = "Valor",
        color = "Leyenda"
    ) +
    # Tema y estilos
    theme_minimal() +
    theme(
        axis.text.x = element_text(angle = 45, hjust = 1, size = 8),
        axis.title.x = element_text(size = 10),
        axis.title.y = element_text(size = 10),
        legend.position = "bottom",
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank()
    )
## Warning: Removed 2869 rows containing missing values or values outside the scale range
## (`geom_ribbon()`).
## Removed 2869 rows containing missing values or values outside the scale range
## (`geom_ribbon()`).
## Warning: Removed 2869 rows containing missing values or values outside the scale range
## (`geom_line()`).

library(prophet)
## Warning: package 'prophet' was built under R version 4.4.3
## Loading required package: Rcpp
## Warning: package 'Rcpp' was built under R version 4.4.3
## Loading required package: rlang
## Warning: package 'rlang' was built under R version 4.4.3
## 
## Attaching package: 'rlang'
## The following objects are masked from 'package:purrr':
## 
##     %@%, flatten, flatten_chr, flatten_dbl, flatten_int, flatten_lgl,
##     flatten_raw, invoke, splice
## The following object is masked from 'package:sparklyr':
## 
##     invoke
## The following object is masked from 'package:data.table':
## 
##     :=
  model <- prophet(
  cbind.data.frame(ds= as.Date(uf_timegpt$ds), y=uf_timegpt$y),
  # Trend flexibility
  growth = "linear",
  changepoint.prior.scale = 0.05,  # Reduced for smoother trend
  n.changepoints = 50,  # Increased from default 25
  
  # Seasonality
  yearly.seasonality = TRUE,
  weekly.seasonality = TRUE,
  daily.seasonality = FALSE,  # Disabled for daily data
  seasonality.mode = "additive",
  seasonality.prior.scale = 15,  # Increased to capture stronger seasonality
  
  # Holidays (if applicable)
  # holidays = generated_holidays  # Create with add_country_holidays()
  
  # Uncertainty intervals
  interval.width = 0.95,
  uncertainty.samples = 1000
)
future <- make_future_dataframe(model, periods = 298, include_history = T)
forecast <- predict(model, future)
forecast <- forecast[, c("ds", "yhat", "yhat_lower", "yhat_upper")]
forecast$pred <- ifelse(forecast$ds > max(uf_timegpt$ds), 1,0)
## Warning in check_tzones(e1, e2): 'tzone' attributes are inconsistent
forecast$ds <- as.Date(forecast$ds)

ggplot(forecast, aes(x = ds, y = yhat)) +
  geom_ribbon(aes(ymin = yhat_lower, ymax = yhat_upper), 
              fill = "#9ecae1", alpha = 0.4) +
  geom_line(color = "#08519c", linewidth = 0.8) +
  geom_vline(xintercept = max(uf_timegpt$ds), color = "red", linetype = "dashed", linewidth=1) +
  scale_x_date(date_breaks = "6 months", date_labels = "%y %b") +
  scale_y_continuous(labels = scales::comma) +
  labs(title = "Valores predichos (95%IC)",
      # subtitle = "March 10, 2025 - May 7, 2025",
       x = "Fecha",
       y = "Valor",
      # caption = "Source: Prophet Forecast Model"
      ) +
  theme_minimal() +
  theme(
    plot.title = element_text(face = "bold", size = 14),
    plot.subtitle = element_text(color = "gray50"),
    axis.text.x = element_text(angle = 45, hjust = 1),
    panel.grid.minor = element_blank(),
    panel.border = element_blank(),
    plot.caption = element_text(color = "gray30")
  )

La proyección de la UF a 298 días más 2025-11-09 00:04:58 sería de: 26.702 pesos// Percentil 95% más alto proyectado: 35.122,54

Según TimeGPT: La proyección de la UF a 298 días más 2026-09-03 sería de: 40.200,95 pesos// Percentil 80% más alto proyectado: 42.731,44 pesos// Percentil 95% más alto proyectado: 42.804,31

Según prophet: La proyección de la UF a 298 días más 2026-09-03 sería de: 42.605 pesos// Percentil 95% más alto proyectado: 49.970

Ahora con un modelo ARIMA automático


arima_optimal_uf = forecast::auto.arima(ts_uf_proy)

  autoplotly::autoplotly(forecast::forecast(arima_optimal_uf, h=298), ts.colour = "darkred",
           predict.colour = "blue", predict.linetype = "dashed")%>% 
  plotly::layout(showlegend = F, 
          yaxis = list(title = "Gastos"),
         xaxis = list(
    title="Fecha",
      ticktext = as.list(seq(from = as.Date("2018-01-01"), 
                                  to = as.Date("2018-01-01")+length(fit_tbats$fitted.values)+298, by = 90)), 
      tickvals = as.list(seq(from = as.numeric(as.Date("2018-01-01")), 
                             to = as.numeric(as.Date("2018-01-01"))+length(fit_tbats$fitted.values)+298, by = 90)),
      tickmode = "array",
    tickangle = 90
    ))
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with `aes()`.
## i See also `vignette("ggplot2-in-packages")` for more information.
## i The deprecated feature was likely used in the ggfortify package.
##   Please report the issue at <https://github.com/sinhrks/ggfortify/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
fr_fit_tbats_uf<-forecast::forecast(arima_optimal_uf, h=298)
dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats)),variable) %>% dplyr::summarise(max=max(value)) %>% 
dplyr::right_join(dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_uf)),variable) %>% dplyr::summarise(max=max(value)),by="variable") %>% 
  dplyr::mutate(variable=factor(variable,levels=c("Lo.95","Lo.80","Point.Forecast","Hi.80","Hi.95"))) %>% 
  dplyr::arrange(variable) %>% 
  knitr::kable(format="markdown", caption="Tabla. Estimación UF (de aquí a 298 días) según cálculos de gastos mensuales",
               col.names= c("Item","UF Proyectada (TBATS)","UF Proyectada (ARIMA)"))
## No id variables; using all as measure variables
## No id variables; using all as measure variables
Tabla. Estimación UF (de aquí a 298 días) según cálculos de gastos mensuales
Item UF Proyectada (TBATS) UF Proyectada (ARIMA)
Lo.95 26316.69 26321.15
Lo.80 26449.27 26486.55
Point.Forecast 26701.54 26799.01
Hi.80 31503.83 32192.83
Hi.95 34386.37 35048.15


3. Gastos proyectados

Lo haré en base a 2 cálculos: el gasto semanal y el gasto mensual en base a mis gastos desde marzo de 2019. La primera proyección la hice añadiendo el precio del arriendo mensual y partiendo en 2 (porque es con yo y Tami). No se incluye el último mes.

Gastos_casa_nvo <- readr::read_csv(as.character(path_sec),
                               col_names = c("Tiempo", "gasto", "fecha", "obs", "monto", "gastador",
                                             "link"),skip=1) %>% 
              dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
              dplyr::mutate(fecha_month=strftime(fecha, format = "%Y-%m")) %>%
              dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))
Gastos_casa_m <-
Gastos_casa_nvo %>% dplyr::group_by(fecha_month)%>%
              dplyr::summarise(gasto_total=(sum(monto)+500000)/1000,fecha=first(fecha))%>%
              data.frame()

uf_serie_corrected_m <-
uf_serie_corrected %>% dplyr::mutate(ano_m=paste0(anio,"-",sprintf("%02d",as.numeric(month)))) %>%  dplyr::group_by(ano_m)%>%
              dplyr::summarise(uf=(mean(value))/1000,fecha=first(date3))%>%
              data.frame() %>% 
  dplyr::filter(fecha>="2019-02-28")
#Error: Error in standardise_path(file) : object 'enlace_gastos' not found

ts_uf_serie_corrected_m<-
ts(data = uf_serie_corrected_m$uf[-length(uf_serie_corrected_m$uf)], 
   start = 1, 
   end = nrow(uf_serie_corrected_m), 
   frequency = 1,
   deltat = 1, ts.eps = getOption("ts.eps"))

ts_gastos_casa_m<-
ts(data = Gastos_casa_m$gasto_total[-length(Gastos_casa_m$gasto_total)], 
   start = 1, 
   end = nrow(Gastos_casa_m), 
   frequency = 1,
   deltat = 1, ts.eps = getOption("ts.eps"))

fit_tbats_m <- forecast::tbats(ts_gastos_casa_m)

seq_dates<-format(seq(as.Date("2019/03/01"), by = "month", length = dim(Gastos_casa_m)[1]+12), "%m\n'%y")

autplo2t<-
  autoplotly::autoplotly(forecast::forecast(fit_tbats_m, h=12), ts.colour = "darkred",
           predict.colour = "blue", predict.linetype = "dashed")%>% 
  plotly::layout(showlegend = F, 
          yaxis = list(title = "Gastos (en miles)"),
         xaxis = list(
    title="Fecha",
      ticktext = as.list(seq_dates[seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)]), 
      tickvals = as.list(seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)),
      tickmode = "array"#"array"
    )) 

autplo2t

Ahora asumiendo un modelo ARIMA, e incluimos como regresor al precio de la UF.

paste0("Optimo pero sin regresor")
## [1] "Optimo pero sin regresor"
arima_optimal = forecast::auto.arima(ts_gastos_casa_m)
arima_optimal
## Series: ts_gastos_casa_m 
## ARIMA(1,0,0) with non-zero mean 
## 
## Coefficients:
##          ar1       mean
##       0.4461  1030.7989
## s.e.  0.1017    38.8318
## 
## sigma^2 = 38578:  log likelihood = -535.03
## AIC=1076.06   AICc=1076.38   BIC=1083.21
paste0("Optimo pero con regresor")
## [1] "Optimo pero con regresor"
arima_optimal2 = forecast::auto.arima(ts_gastos_casa_m, xreg=as.numeric(ts_uf_serie_corrected_m[1:(length(Gastos_casa_m$gasto_total))]))
arima_optimal2
## Series: ts_gastos_casa_m 
## Regression with ARIMA(1,0,0) errors 
## 
## Coefficients:
##          ar1  intercept    xreg
##       0.4415   851.7119  5.4465
## s.e.  0.1021   320.8872  9.6817
## 
## sigma^2 = 38929:  log likelihood = -534.87
## AIC=1077.75   AICc=1078.28   BIC=1087.28
forecast_uf<-
cbind.data.frame(fecha=as.Date(seq(as.numeric(as.Date(uf_serie_corrected$date3[length(uf_serie_corrected$date3)])),(as.numeric(as.Date(uf_serie_corrected$date3[length(uf_serie_corrected$date3)]))+299),by=1), origin = "1970-01-01"),forecast::forecast(fit_tbats, h=300)) %>% 
  dplyr::mutate(ano_m=stringr::str_extract(fecha,".{7}")) %>% 
  dplyr::group_by(ano_m)%>%
              dplyr::summarise(uf=(mean(`Hi 95`,na.rm=T))/1000,fecha=first(fecha))%>%
            data.frame()
autplo2t2<-
  autoplotly::autoplotly(forecast::forecast(arima_optimal2,xreg=c(forecast_uf$uf[1],forecast_uf$uf), h=12), ts.colour = "darkred",
           predict.colour = "blue", predict.linetype = "dashed")%>% 
  plotly::layout(showlegend = F, 
          yaxis = list(title = "Gastos (en miles)"),
         xaxis = list(
    title="Fecha",
      ticktext = as.list(seq_dates[seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)]), 
      tickvals = as.list(seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)),
      tickmode = "array"#"array"
    )) 

autplo2t2
fr_fit_tbats_m<-forecast::forecast(fit_tbats_m, h=12)
fr_fit_tbats_m2<-forecast::forecast(arima_optimal, h=12)
fr_fit_tbats_m3<-forecast::forecast(arima_optimal2, h=12,xreg=c(forecast_uf$uf[1],forecast_uf$uf))

dplyr::right_join(dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_m3)),variable) %>% dplyr::summarise(max=max(value)), dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_m2)),variable) %>% dplyr::summarise(max=max(value)),by="variable") %>% 
dplyr::right_join(dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_m)),variable) %>% dplyr::summarise(max=max(value)),by="variable") %>% 
  dplyr::mutate(variable=factor(variable,levels=c("Lo.95","Lo.80","Point.Forecast","Hi.80","Hi.95"))) %>% 
  dplyr::arrange(variable) %>% 
  knitr::kable(format="markdown", caption="Estimación en miles de la plata a gastar en el futuro (de aquí a 12 meses) según cálculos de gastos mensuales",
               col.names= c("Item","Modelo ARIMA con regresor (UF)","Modelo ARIMA sin regresor","Modelo TBATS")) 
## No id variables; using all as measure variables
## No id variables; using all as measure variables
## No id variables; using all as measure variables
Estimación en miles de la plata a gastar en el futuro (de aquí a 12 meses) según cálculos de gastos mensuales
Item Modelo ARIMA con regresor (UF) Modelo ARIMA sin regresor Modelo TBATS
Lo.95 608.0395 600.6350 590.2443
Lo.80 757.2162 749.5237 680.5277
Point.Forecast 1039.0176 1030.7811 890.4046
Hi.80 1320.8189 1312.0385 1213.2736
Hi.95 1469.9956 1460.9272 1429.1281


4. Gastos mensuales (resumen manual)

path_sec2<- paste0("https://docs.google.com/spreadsheets/d/",Sys.getenv("SUPERSECRET"),"/export?format=csv&id=",Sys.getenv("SUPERSECRET"),"&gid=847461368")

Gastos_casa_mensual_2022 <- readr::read_csv(as.character(path_sec2),
                #col_names = c("Tiempo", "gasto", "fecha", "obs", "monto", "gastador","link"),
                skip=0)
## Rows: 80 Columns: 4
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): mes_ano
## dbl (3): n, Tami, Andrés
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(Gastos_casa_mensual_2022,5) %>% 
  knitr::kable("markdown",caption="Resumen mensual, primeras 5 observaciones")
Resumen mensual, primeras 5 observaciones
n mes_ano Tami Andrés
1 marzo_2019 175533 68268
2 abril_2019 152640 55031
3 mayo_2019 152985 192219
4 junio_2019 291067 84961
5 julio_2019 241389 205893


(
Gastos_casa_mensual_2022 %>% 
    reshape2::melt(id.var=c("n","mes_ano")) %>%
  dplyr::mutate(gastador=as.factor(variable)) %>% 
  dplyr::select(-variable) %>% 
 ggplot2::ggplot(aes(x = n, y = value, color=gastador)) +
  scale_color_manual(name="Gastador", values=c("red", "blue"))+
  geom_line(size=1) +
  #geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
  labs(y="Gastos (en miles)",x="Meses", subtitle="Azul= Tami; Rojo= Andrés") +
  ggtitle( "Gastos Mensuales (total manual)") +
  scale_y_continuous(labels = f <- function(x) paste0(x/1000)) + 
#  scale_color_manual(name = "Gastador", values= c("blue", "red"), labels = c("Tami", "Andrés")) +
#  scale_x_yearweek(breaks = "1 month", minor_breaks = "1 week", labels=date_format("%m/%y")) +
 # guides(color = F)+
  theme_custom() +
  theme(axis.text.x = element_text(vjust = 0.5,angle = 35)) +
  theme(
    panel.border = element_blank(), 
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), 
    axis.line = element_line(colour = "black")
    )
) %>% ggplotly()
Gastos_casa_mensual_2022$mes_ano <- gsub("marzo", "Mar", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("abril", "Apr", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("mayo", "May", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("junio", "Jun", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("julio", "Jul", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("agosto", "Aug", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("septiembre", "Sep", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("octubre", "Oct", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("noviembre", "Nov", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("diciembre", "Dec", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("enero", "Jan", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("febrero", "Feb", Gastos_casa_mensual_2022$mes_ano)

Gastos_casa_mensual_2022<- dplyr::filter(Gastos_casa_mensual_2022, !is.na(Tami))

Gastos_casa_mensual_2022$mes_ano <- parse_date_time(Gastos_casa_mensual_2022$mes_ano, "%b_%Y")

Gastos_casa_mensual_2022$mes_ano <- as.Date(as.character(Gastos_casa_mensual_2022$mes_ano))

Gastos_casa_mensual_2022_timegpt <- Gastos_casa_mensual_2022 %>%
  mutate(value = Tami + Andrés) %>%
  rename(ds = mes_ano, y = value) %>%
  mutate(#ds= format(ds, "%Y-%m"),
         unique_id = "1") %>% #it is only one series
  select(unique_id, ds, y)

#Convertir la base de UF a mensual
uf_timegpt_my <- uf_serie_corrected %>%
  dplyr::rename(ds = date3, y = value) %>%
  dplyr::mutate(ds = format(ds, "%Y-%m-%d")) %>%
  dplyr::mutate(unique_id = "serie_1")%>%
  dplyr::select(unique_id, ds, y) %>%
  mutate(ds = ymd(ds)) %>%  # Convert 'ds' to Date
  mutate(month = month(ds), year = year(ds)) %>%  # Extract month and year
  group_by(month, year) %>%  # Group by month and year
  summarise(average_y = mean(y))%>%  # Calculate average y
  mutate(ds = as.Date(paste0(year,"-",month, "-01")))%>%
  ungroup()%>%
  select(ds, uf=average_y)

Gastos_casa_mensual_2022_timegpt_ex<-
Gastos_casa_mensual_2022_timegpt |> 
  dplyr::left_join(uf_timegpt_my, by=c("ds"="ds")) 

#Historical Exogenous Variables: These should be included in the input data immediately following the id_col, ds, and y columns
gastos_timegpt_fcst <- nixtlar::nixtla_client_forecast(
  Gastos_casa_mensual_2022_timegpt_ex,
  h = 12,
  freq = "M",  # Monthly frequency
  add_history = TRUE,
  level = c(80, 95),
  model = "timegpt-1",#"timegpt-1-long-horizon",
  clean_ex_first = TRUE
)

# Convert 'ds' to Date format in both tables
Gastos_casa_mensual_2022_timegpt_corr <- Gastos_casa_mensual_2022_timegpt %>%
  mutate(ds = as.Date(paste0(ds, "-01")))  # Add day to make it a complete date

gastos_timegpt_fcst <- gastos_timegpt_fcst %>%
  mutate(ds = as.Date(paste0(ds, "-01")))  # Add day to make it a complete date

# Combine historical and forecast data
full_data_gastos <- bind_rows(
  Gastos_casa_mensual_2022_timegpt_corr %>% mutate(type = "Histórico"),
  gastos_timegpt_fcst %>% mutate(type = "Pronóstico")
)

full_data_gastos |> 
  dplyr::mutate(y= ifelse(is.na(y),TimeGPT, y)) |> 
# Visualize results
ggplot(aes(x = ds, y = y)) +
  geom_ribbon(aes(ymin = `TimeGPT-lo-95`, ymax = `TimeGPT-hi-95`),
              fill = "#4B9CD3", alpha = 0.2) +
  geom_ribbon(aes(ymin = `TimeGPT-lo-80`, ymax = `TimeGPT-hi-80`),
              fill = "#4B9CD3", alpha = 0.3) +
  geom_line(aes(color = type), linewidth = 1.5) +
  geom_vline(xintercept = max(filter(full_data_gastos, type == "Histórico")$ds),
             linetype = "dashed", color = "red", linewidth = 0.8) +
  scale_x_date(
    date_breaks = "3 months",
    date_labels = "%b %Y"
  ) +
  scale_y_continuous(
    name = "Gastos Totales",
    labels = scales::comma,
    breaks = pretty(full_data_gastos$y, n = 10),
    expand = expansion(mult = c(0.05, 0.05))
  ) +
  scale_color_manual(
    name = "Leyenda",
    values = c("Histórico" = "black", "Pronóstico" = "#4B9CD3")
  ) +
  labs(
    title = "Pronóstico de Gastos Mensuales (TimeGPT, ajustando por UF promedio mensual)",
    subtitle = "Intervalos de confianza al 80% (más oscuro) y 95% (más claro)",
    x = "Fecha",
    y = "Gastos Totales",
    color = "Leyenda"
  ) +
  theme_minimal() +
  theme(
    axis.text.x = element_text(angle = 45, hjust = 1),
    axis.title.x = element_text(size = 10),
    axis.title.y = element_text(size = 10),
    legend.position = "bottom",
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank()
  )


Session Info

Sys.getenv("R_LIBS_USER")
## [1] "D:\\a\\_temp\\Library"
sessionInfo()
## R version 4.4.0 (2024-04-24 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows Server 2022 x64 (build 26100)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=Spanish_Chile.1252  LC_CTYPE=Spanish_Chile.1252   
## [3] LC_MONETARY=Spanish_Chile.1252 LC_NUMERIC=C                  
## [5] LC_TIME=Spanish_Chile.1252    
## system code page: 65001
## 
## time zone: UTC
## tzcode source: internal
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] prophet_1.0        rlang_1.1.6        Rcpp_1.1.0         scales_1.4.0      
##  [5] ggiraph_0.9.2      tidytext_0.4.3     DT_0.34.0          janitor_2.2.1     
##  [9] autoplotly_0.1.4   rvest_1.0.5        plotly_4.11.0      xts_0.14.1        
## [13] forecast_8.24.0    wordcloud_2.6      RColorBrewer_1.1-3 SnowballC_0.7.1   
## [17] tm_0.7-16          NLP_0.3-2          tsibble_1.1.6      lubridate_1.9.4   
## [21] forcats_1.0.1      dplyr_1.1.4        purrr_1.1.0        tidyr_1.3.1       
## [25] tibble_3.3.0       tidyverse_2.0.0    gsynth_1.2.1       sjPlot_2.9.0      
## [29] lattice_0.22-6     GGally_2.4.0       ggplot2_4.0.0      gridExtra_2.3     
## [33] plotrix_3.8-4      sparklyr_1.9.2     httr_1.4.7         readxl_1.4.5      
## [37] zoo_1.8-14         stringr_1.5.2      stringi_1.8.7      DataExplorer_0.8.4
## [41] data.table_1.17.8  reshape2_1.4.4     fUnitRoots_4040.81 plyr_1.8.9        
## [45] readr_2.1.5       
## 
## loaded via a namespace (and not attached):
##   [1] bitops_1.0-9            cellranger_1.1.0        httr2_1.2.1            
##   [4] lifecycle_1.0.4         StanHeaders_2.32.10     doParallel_1.0.17      
##   [7] globals_0.18.0          vroom_1.6.6             MASS_7.3-60.2          
##  [10] crosstalk_1.2.2         magrittr_2.0.4          sass_0.4.10            
##  [13] rmarkdown_2.30          jquerylib_0.1.4         yaml_2.3.10            
##  [16] fracdiff_1.5-3          doRNG_1.8.6.2           askpass_1.2.1          
##  [19] pkgbuild_1.4.8          DBI_1.2.3               abind_1.4-8            
##  [22] quadprog_1.5-8          nnet_7.3-19             rappdirs_0.3.3         
##  [25] sandwich_3.1-1          gdtools_0.4.4           inline_0.3.21          
##  [28] data.tree_1.2.0         tokenizers_0.3.0        listenv_0.9.1          
##  [31] anytime_0.3.12          spatial_7.3-17          parallelly_1.45.1      
##  [34] codetools_0.2-20        xml2_1.4.0              tidyselect_1.2.1       
##  [37] farver_2.1.2            urca_1.3-4              its.analysis_1.6.0     
##  [40] matrixStats_1.5.0       stats4_4.4.0            jsonlite_2.0.0         
##  [43] ellipsis_0.3.2          Formula_1.2-5           iterators_1.0.14       
##  [46] systemfonts_1.3.1       foreach_1.5.2           tools_4.4.0            
##  [49] glue_1.8.0              xfun_0.53               TTR_0.24.4             
##  [52] ggfortify_0.4.19        loo_2.8.0               withr_3.0.2            
##  [55] timeSeries_4041.111     fastmap_1.2.0           boot_1.3-30            
##  [58] openssl_2.3.4           caTools_1.18.3          digest_0.6.37          
##  [61] timechange_0.3.0        R6_2.6.1                lfe_3.1.1              
##  [64] colorspace_2.1-2        networkD3_0.4.1         gtools_3.9.5           
##  [67] generics_0.1.4          fontLiberation_0.1.0    htmlwidgets_1.6.4      
##  [70] ggstats_0.11.0          pkgconfig_2.0.3         gtable_0.3.6           
##  [73] timeDate_4051.111       lmtest_0.9-40           S7_0.2.0               
##  [76] selectr_0.4-2           janeaustenr_1.0.0       htmltools_0.5.8.1      
##  [79] fontBitstreamVera_0.1.1 carData_3.0-5           tseries_0.10-58        
##  [82] snakecase_0.11.1        knitr_1.50              rstudioapi_0.17.1      
##  [85] tzdb_0.5.0              nlme_3.1-164            curl_7.0.0             
##  [88] cachem_1.1.0            KernSmooth_2.23-22      parallel_4.4.0         
##  [91] fBasics_4041.97         pillar_1.11.1           vctrs_0.6.5            
##  [94] gplots_3.2.0            slam_0.1-55             car_3.1-3              
##  [97] dbplyr_2.5.1            xtable_1.8-4            evaluate_1.0.5         
## [100] mvtnorm_1.3-3           cli_3.6.5               compiler_4.4.0         
## [103] crayon_1.5.3            rngtools_1.5.2          future.apply_1.20.0    
## [106] labeling_0.4.3          rstan_2.32.7            QuickJSR_1.8.1         
## [109] viridisLite_0.4.2       lazyeval_0.2.2          fontquiver_0.2.1       
## [112] Matrix_1.7-0            hms_1.1.4               bit64_4.6.0-1          
## [115] future_1.67.0           nixtlar_0.6.2           extraDistr_1.10.0      
## [118] igraph_2.2.0            RcppParallel_5.1.11-1   bslib_0.9.0            
## [121] quantmod_0.4.28         bit_4.6.0
#save.image("__analisis.RData")

sesion_info <- devtools::session_info()
dplyr::select(
  tibble::as_tibble(sesion_info$packages),
  c(package, loadedversion, source)
) %>% 
  DT::datatable(filter = 'top', colnames = c('Row number' =1,'Variable' = 2, 'Percentage'= 3),
              caption = htmltools::tags$caption(
        style = 'caption-side: top; text-align: left;',
        '', htmltools::em('Packages')),
      options=list(
initComplete = htmlwidgets::JS(
        "function(settings, json) {",
        "$(this.api().tables().body()).css({
            'font-family': 'Helvetica Neue',
            'font-size': '50%', 
            'code-inline-font-size': '15%', 
            'white-space': 'nowrap',
            'line-height': '0.75em',
            'min-height': '0.5em'
            });",#;
        "}")))