1. Gastos (cálculos antiguos)

Gastos_casa %>% 
  dplyr::select(-Tiempo,-link) %>%
  dplyr::select(fecha, gasto, monto, gastador,obs) %>% tail(30) %>% 
  knitr::kable(format = "markdown", size=12)
fecha gasto monto gastador obs
3/3/2025 Comida 9370 Andrés NA
9/3/2025 Comida 61916 Tami Supermercado
11/3/2025 Comida 27021 Andrés NA
11/3/2025 Enceres 13190 Tami 40 rollos confort
15/3/2025 Comida 78061 Tami Supermercado
17/3/2025 Electricidad 52458 Andrés NA
17/3/2025 VTR 22000 Andrés NA
21/3/2025 Agua 19562 Andrés NA
22/3/2025 Comida 76766 Tami Supermercado
21/3/2025 Diosi 18500 Andrés antiparasitario
27/3/2025 Gas 82450 Andrés NA
26/3/2025 Comida 4000 Andrés avena multigrano y chucrut
29/3/2025 Comida 70591 Tami Supermercado
3/4/2025 Gas 83300 Andrés NA
4/4/2025 Agua 20807 Andrés NA
6/4/2025 Comida 52655 Tami Supermercado
12/4/2025 Comida 72108 Tami Supermercado
16/4/2025 VTR 21990 Andrés NA
22/4/2025 Comida 107881 Tami Supermercado
26/4/2025 Comida 55874 Tami Supermercado
28/4/2025 Comida 13050 Tami Cervezas MUT
29/4/2025 Electricidad 52507 Andrés enel
29/4/2025 Diosi 11990 Andrés arena 7kg superzoo
3/5/2025 Agua 17072 Andrés aguas andina
13/5/2025 VTR 22000 Andrés NA
17/5/2025 Electricidad 52404 Andrés NA
13/6/2025 VTR 22000 Andrés NA
22/6/2025 Electricidad 52401 Andrés NA
31/3/2019 Comida 9000 Andrés NA
8/9/2019 Comida 24588 Andrés Super Lider

#para ver las diferencias depués de la diosi
Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(gastador=ifelse(gastador=="Andrés",1,0)) %>%
    dplyr::group_by(gastador, fecha,.drop = F) %>% 
    dplyr::summarise(gasto_media=mean(monto,na.rm=T)) %>% 
    dplyr::mutate(treat=ifelse(fecha>"2019-W26",1,0)) %>%
    #dplyr::mutate(fecha_simp=lubridate::week(fecha)) %>%#después de  diosi. Junio 24, 2019 
    dplyr::mutate(gastador_nombre=plyr::revalue(as.character(gastador), c("0" = "Tami", "1"="Andrés"))) %>% 
    assign("ts_gastos_casa_week_treat", ., envir = .GlobalEnv) 

gplots::plotmeans(gasto_media ~ gastador_nombre, main="Promedio de gasto por gastador", data=ts_gastos_casa_week_treat,ylim=c(0,75000), xlab="", ylab="")

par(mfrow=c(1,2)) 
gplots::plotmeans(gasto_media ~ gastador_nombre, main="Antes de Diosi", data=ts_gastos_casa_week_treat[ts_gastos_casa_week_treat$treat==0,], xlab="", ylab="", ylim=c(0,70000))

gplots::plotmeans(gasto_media ~ gastador_nombre, main="Después de Diosi", data=ts_gastos_casa_week_treat[ts_gastos_casa_week_treat$treat==1,], xlab="", ylab="",ylim=c(0,70000))

library(ggiraph)
library(scales)
#if( requireNamespace("dplyr", quietly = TRUE)){
gg <- Gastos_casa %>%
  dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
  dplyr::mutate(gastador=ifelse(gastador=="Andrés",1,0)) %>%
  dplyr::mutate(fecha_simp=tsibble::yearweek(fecha)) %>%
  dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
  dplyr::mutate(treat=ifelse(fecha_week>"2019 W26",1,0)) %>%
  dplyr::mutate(gastador_nombre=plyr::revalue(as.character(gastador), c("0" = "Tami", "1"="Andrés"))) %>% 
#  dplyr::mutate(week=as.Date(as.character(lubridate::floor_date(fecha, "week"))))%>%
  #dplyr::mutate(fecha_week= lubridate::parse_date_time(fecha_week, c("%Y-W%V"),exact=T)) %>% 
  dplyr::group_by(gastador_nombre, fecha_simp) %>%
  dplyr::summarise(monto_total=sum(monto)) %>%
  dplyr::mutate(tooltip= paste0(substr(gastador_nombre,1,1),"=",round(monto_total/1000,2))) %>%
  ggplot(aes(hover_css = "fill:none;")) +#, ) +
  #stat_summary(geom = "line", fun.y = median, size = 1, alpha=0.5, aes(color="blue")) +
  geom_line(aes(x = fecha_simp, y = monto_total, color=as.factor(gastador_nombre)),size=1,alpha=.5) +
                       ggiraph::geom_point_interactive(aes(x = fecha_simp, y = monto_total, color=as.factor(gastador_nombre),tooltip=tooltip),size = 1) +
  #geom_text(aes(x = fech_ing_qrt, y = perc_dup-0.05, label = paste0(n)), vjust = -1,hjust = 0, angle=45, size=3) +
 # guides(color = F)+
  theme_custom() +
  geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
  labs(y="Gastos (en miles)",x="Semanas y Meses", subtitle="Interlineado, incorporación de la Diosi; Azul= Tami; Rojo= Andrés") + ggtitle( "Figura 4. Gastos por Gastador") +
  scale_y_continuous(labels = f <- function(x) paste0(x/1000)) + 
  scale_color_manual(name = "Gastador", values= c("blue", "red"), labels = c("Tami", "Andrés")) +
  scale_x_yearweek(date_breaks = "1 month", minor_breaks = "1 week", labels=scales::date_format("%m/%y")) +
  theme(axis.text.x = element_text(vjust = 0.5,angle = 35), legend.position='bottom')+
     theme(
    panel.border = element_blank(), 
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), 
    axis.line = element_line(colour = "black")
    )

#  x <- girafe(ggobj = gg)
#  x <- girafe_options(x = x,
#                      opts_hover(css = "stroke:red;fill:orange") )
#  if( interactive() ) print(x)

#}
tooltip_css <- "background-color:gray;color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;"

#ggiraph(code = {print(gg)}, tooltip_extra_css = tooltip_css, tooltip_opacity = .75 )

x <- girafe(ggobj = gg)
x <- girafe_options(x,
  opts_zoom(min = 1, max = 3), opts_hover(css =tooltip_css))
x
plot<-Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(month=as.Date(as.character(lubridate::floor_date(fecha, "month"))))%>%
    dplyr::group_by(month)%>%
    dplyr::summarise(gasto_total=sum(monto)/1000) %>%
      ggplot2::ggplot(aes(x = month, y = gasto_total)) +
      geom_point()+
      geom_line(size=1) +
      theme_custom() +
      geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
      geom_vline(xintercept = as.Date("2019-03-23"),linetype = "dashed", color="red") +
      labs(y="Gastos (en miles)",x="Meses/Año", subtitle="Interlineado, incorporación de la Diosi") + 
      ggtitle( "Figura. Suma de Gastos por Mes") +        
      scale_x_date(breaks = "1 month", minor_breaks = "1 month", labels=scales::date_format("%m/%y")) +
      theme(axis.text.x = element_text(vjust = 0.5,angle = 45)) 
plotly::ggplotly(plot)  
plot2<-Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::group_by(day)%>%
    summarise(gasto_total=sum(monto)/1000) %>%
      ggplot2::ggplot(aes(x = day, y = gasto_total)) +
      geom_line(size=1) +
      theme_custom() +
      geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
      geom_vline(xintercept = as.Date("2020-03-23"),linetype = "dashed", color="red") +
      labs(y="Gastos (en miles)",x="Meses/Año", subtitle="Interlineado, incorporación de la Diosi") + 
      ggtitle( "Figura. Suma de Gastos por Día") +        
      scale_x_date(breaks = "1 month", minor_breaks = "1 week", labels=scales::date_format("%m/%y")) +
      theme(axis.text.x = element_text(vjust = 0.5,angle = 45)) 
plotly::ggplotly(plot2)  
tsData <- Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::group_by(day)%>%
    summarise(gasto_total=sum(monto))%>%
    dplyr::mutate(covid=case_when(day>as.Date("2019-06-02")~1,TRUE~0))%>%
    dplyr::mutate(covid=case_when(day>as.Date("2020-03-10")~covid+1,TRUE~covid))%>%
    dplyr::mutate(covid=as.factor(covid))%>%
  data.frame()
tsData_gastos <-ts(tsData$gasto_total, frequency=7)
mstsData_gastos <- forecast::msts(Gastos_casa$monto, seasonal.periods=c(7,30))

tsData_gastos = decompose(tsData_gastos)

tsdata_gastos_trend<-cbind(tsData,trend=as.vector(tsData_gastos$trend))%>% na.omit()

# Assuming your time series starts on "2019-03-03"
start_date <- as.Date("2019-03-03")
frequency <- 7  # Weekly data
num_periods <- length(tsData_gastos$x)  # Total number of periods in your time series

# Generate sequence of dates
dates <- tsData$day# seq.Date(from = start_date, by = "day", length.out = num_periods)

# Create a data frame from the decomposed time series object
tsData_gastos_df <- data.frame(
  day = dates,
  Actual = as.numeric(tsData_gastos$x),
  Seasonal = as.numeric(tsData_gastos$seasonal),
  Trend = as.numeric(tsData_gastos$trend),
  Random = as.numeric(tsData_gastos$random)
)

tsData_gastos_long <- tsData_gastos_df %>%
  pivot_longer(cols = c("Actual", "Seasonal", "Trend", "Random"), 
               names_to = "Component", values_to = "Value")

# Plotting with facet_wrap
ggplot(tsData_gastos_long, aes(x = day, y = Value)) +
  geom_line() +
  theme_bw() + 
  labs(title = "Descomposición de los Gastos Diarios", x = "Date", y = "Value") +
  scale_x_date(date_breaks = "3 months", date_labels = "%m %Y") +
  facet_wrap(~ Component, scales = "free_y", ncol=1) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
  theme(strip.text = element_text(size = 12))

#tsData_gastos$trend
#Using the inputted variables, a Type-2 Sum Squares ANCOVA Lagged Dependent Variable model is fitted which estimates the difference in means between interrupted and non-interrupted time periods, while accounting for the lag of the dependent variable and any further specified covariates.
#Typically such analyses use Auto-regressive Integrated Moving Average (ARIMA) models to handle the serial dependence of the residuals of a linear model, which is estimated either as part of the ARIMA process or through a standard linear regression modeling process [9,17]. All such time series methods enable the effect of the event to be separated from general trends and serial dependencies in time, thereby enabling valid statistical inferences to be made about whether an intervention has had an effect on a time series.
   #it uses Type-2 Sum Squares ANCOVA Lagged Dependent Variable model
   #ITSA model da cuenta de observaciones autocorrelacionadas e impactos dinámicos mediante una regresión de deltas en rezagados. Una vez que se incorporan en el modelo, se controlan. 
#residual autocorrelation assumptions
#TSA allows the model to account for baseline levels and trends present in the data therefore allowing us to attribute significant changes to the interruption
#RDestimate(all~agecell,data=metro_region,cutpoint = 21)
tsdata_gastos_trend<-cbind(tsData,trend=as.vector(tsData_gastos$trend))%>% na.omit()

itsa_metro_region_quar2<-
        its.analysis::itsa.model(time = "day", depvar = "trend",data=tsdata_gastos_trend,
                                 interrupt_var = "covid", 
                                 alpha = 0.05,no.plots = F, bootstrap = TRUE, Reps = 10000, print = F) 

print(itsa_metro_region_quar2)
## [[1]]
## [1] "ITSA Model Fit"
## 
## $aov.result
## Anova Table (Type II tests)
## 
## Response: depvar
##                   Sum Sq  Df   F value Pr(>F)    
## interrupt_var 9.8113e+08   2    5.0411 0.0067 ** 
## lag_depvar    2.6346e+11   1 2707.3425 <2e-16 ***
## Residuals     8.1645e+10 839                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $tukey.result
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: stats::aov(formula = x$depvar ~ x$interrupt_var)
## 
## $`x$interrupt_var`
##          diff      lwr      upr     p adj
## 1-0  7228.838 -1814.51 16272.19 0.1460574
## 2-0 31315.096 23178.39 39451.80 0.0000000
## 2-1 24086.258 19377.82 28794.69 0.0000000
## 
## 
## $data
##        depvar interrupt_var lag_depvar
## 2    19269.29             0   16010.00
## 3    24139.00             0   19269.29
## 4    23816.14             0   24139.00
## 5    26510.14             0   23816.14
## 6    23456.71             0   26510.14
## 7    24276.71             0   23456.71
## 8    18818.71             0   24276.71
## 9    18517.14             0   18818.71
## 10   15475.29             0   18517.14
## 11   16365.29             0   15475.29
## 12   12621.29             0   16365.29
## 13   12679.86             0   12621.29
## 14   13440.71             0   12679.86
## 15   15382.86             0   13440.71
## 16   13459.71             0   15382.86
## 17   14644.14             0   13459.71
## 18   13927.00             0   14644.14
## 19   22034.57             0   13927.00
## 20   20986.00             0   22034.57
## 21   20390.57             0   20986.00
## 22   22554.14             0   20390.57
## 23   21782.57             0   22554.14
## 24   22529.57             0   21782.57
## 25   24642.71             0   22529.57
## 26   17692.29             0   24642.71
## 27   19668.29             0   17692.29
## 28   28640.00             0   19668.29
## 29   28706.00             0   28640.00
## 30   28331.57             0   28706.00
## 31   25617.86             0   28331.57
## 32   27223.29             0   25617.86
## 33   31622.57             0   27223.29
## 34   32021.43             0   31622.57
## 35   33634.57             0   32021.43
## 36   30784.86             0   33634.57
## 37   34770.57             0   30784.86
## 38   38443.00             1   34770.57
## 39   35073.00             1   38443.00
## 40   31422.29             1   35073.00
## 41   30103.29             1   31422.29
## 42   19319.29             1   30103.29
## 43   27926.29             1   19319.29
## 44   30715.43             1   27926.29
## 45   31962.29             1   30715.43
## 46   39790.14             1   31962.29
## 47   39211.57             1   39790.14
## 48   44548.57             1   39211.57
## 49   49398.00             1   44548.57
## 50   41039.00             1   49398.00
## 51   34821.29             1   41039.00
## 52   29123.57             1   34821.29
## 53   21275.71             1   29123.57
## 54   28476.14             1   21275.71
## 55   24561.86             1   28476.14
## 56   20323.57             1   24561.86
## 57   25370.00             1   20323.57
## 58   26811.86             1   25370.00
## 59   27151.86             1   26811.86
## 60   27623.29             1   27151.86
## 61   22896.57             1   27623.29
## 62   41889.29             1   22896.57
## 63   44000.14             1   41889.29
## 64   38558.00             1   44000.14
## 65   43373.86             1   38558.00
## 66   49001.00             1   43373.86
## 67   61213.29             1   49001.00
## 68   58939.57             1   61213.29
## 69   42046.86             1   58939.57
## 70   39191.71             1   42046.86
## 71   42646.43             1   39191.71
## 72   36121.57             1   42646.43
## 73   30915.57             1   36121.57
## 74   20273.43             1   30915.57
## 75   23938.29             1   20273.43
## 76   19274.29             1   23938.29
## 77   21662.29             1   19274.29
## 78   15819.00             1   21662.29
## 79   18126.14             1   15819.00
## 80   17240.71             1   18126.14
## 81   16127.71             1   17240.71
## 82   13917.14             1   16127.71
## 83   15379.86             1   13917.14
## 84   19510.14             1   15379.86
## 85   24567.29             1   19510.14
## 86   25700.43             1   24567.29
## 87   25729.00             1   25700.43
## 88   26435.00             1   25729.00
## 89   31157.14             1   26435.00
## 90   29818.43             1   31157.14
## 91   30962.43             1   29818.43
## 92   28746.71             1   30962.43
## 93   27830.71             1   28746.71
## 94   28252.14             1   27830.71
## 95   28717.57             1   28252.14
## 96   21365.43             1   28717.57
## 97   24816.86             1   21365.43
## 98   16838.57             1   24816.86
## 99   15529.14             1   16838.57
## 100  13286.29             1   15529.14
## 101  13629.43             1   13286.29
## 102  14404.86             1   13629.43
## 103  19524.86             1   14404.86
## 104  18475.71             1   19524.86
## 105  22495.00             1   18475.71
## 106  22254.57             1   22495.00
## 107  24173.29             1   22254.57
## 108  27466.43             1   24173.29
## 109  24602.43             1   27466.43
## 110  20531.14             1   24602.43
## 111  20846.43             1   20531.14
## 112  23875.71             1   20846.43
## 113  36312.71             1   23875.71
## 114  34244.00             1   36312.71
## 115  36347.43             1   34244.00
## 116  39779.71             1   36347.43
## 117  42018.71             1   39779.71
## 118  39372.57             1   42018.71
## 119  33444.00             1   39372.57
## 120  29255.86             1   33444.00
## 121  31640.14             1   29255.86
## 122  29671.14             1   31640.14
## 123  31023.71             1   29671.14
## 124  39723.43             1   31023.71
## 125  39314.14             1   39723.43
## 126  38239.86             1   39314.14
## 127  34649.43             1   38239.86
## 128  36688.43             1   34649.43
## 129  42867.57             1   36688.43
## 130  42226.86             1   42867.57
## 131  32155.14             1   42226.86
## 132  33603.00             1   32155.14
## 133  37254.43             1   33603.00
## 134  33145.57             1   37254.43
## 135  31299.43             1   33145.57
## 136  30252.00             1   31299.43
## 137  26310.71             1   30252.00
## 138  27929.86             1   26310.71
## 139  27666.14             1   27929.86
## 140  25017.57             1   27666.14
## 141  27335.00             1   25017.57
## 142  25760.71             1   27335.00
## 143  18436.86             1   25760.71
## 144  21906.00             1   18436.86
## 145  19418.14             1   21906.00
## 146  22826.14             1   19418.14
## 147  23444.29             1   22826.14
## 148  25264.86             1   23444.29
## 149  25473.29             1   25264.86
## 150  27366.86             1   25473.29
## 151  28855.86             1   27366.86
## 152  32326.86             1   28855.86
## 153  27141.43             1   32326.86
## 154  26297.71             1   27141.43
## 155  23499.14             1   26297.71
## 156  30246.29             1   23499.14
## 157  39931.86             1   30246.29
## 158  38020.43             2   39931.86
## 159  35004.00             2   38020.43
## 160  40750.86             2   35004.00
## 161  42363.29             2   40750.86
## 162  46273.57             2   42363.29
## 163  41083.29             2   46273.57
## 164  35711.29             2   41083.29
## 165  41921.71             2   35711.29
## 166  60583.29             2   41921.71
## 167  63115.57             2   60583.29
## 168  61300.14             2   63115.57
## 169  57666.43             2   61300.14
## 170  55834.00             2   57666.43
## 171  58927.71             2   55834.00
## 172  57810.57             2   58927.71
## 173  48987.14             2   57810.57
## 174  52219.29             2   48987.14
## 175  56503.57             2   52219.29
## 176  56545.00             2   56503.57
## 177  64705.57             2   56545.00
## 178  53833.29             2   64705.57
## 179  50114.00             2   53833.29
## 180  39592.43             2   50114.00
## 181  29907.29             2   39592.43
## 182  33923.29             2   29907.29
## 183  45489.00             2   33923.29
## 184  44866.29             2   45489.00
## 185  51680.57             2   44866.29
## 186  58257.00             2   51680.57
## 187  70600.57             2   58257.00
## 188  76648.00             2   70600.57
## 189  69430.14             2   76648.00
## 190  69651.57             2   69430.14
## 191  77745.14             2   69651.57
## 192  72795.86             2   77745.14
## 193  67670.71             2   72795.86
## 194  55357.86             2   67670.71
## 195  48524.00             2   55357.86
## 196  50154.43             2   48524.00
## 197  45111.57             2   50154.43
## 198  36147.00             2   45111.57
## 199  43501.57             2   36147.00
## 200  41472.43             2   43501.57
## 201  41058.00             2   41472.43
## 202  41605.57             2   41058.00
## 203  49382.86             2   41605.57
## 204  59558.57             2   49382.86
## 205  59134.57             2   59558.57
## 206  61109.00             2   59134.57
## 207  63004.43             2   61109.00
## 208  67344.29             2   63004.43
## 209  78180.86             2   67344.29
## 210  69117.86             2   78180.86
## 211  55597.57             2   69117.86
## 212  49426.14             2   55597.57
## 213  39119.43             2   49426.14
## 214  35636.86             2   39119.43
## 215  39201.14             2   35636.86
## 216  27777.00             2   39201.14
## 217  47207.00             2   27777.00
## 218  55587.29             2   47207.00
## 219  56619.71             2   55587.29
## 220  82679.86             2   56619.71
## 221  91259.57             2   82679.86
## 222  93552.71             2   91259.57
## 223 102242.71             2   93552.71
## 224  91884.00             2  102242.71
## 225  85013.86             2   91884.00
## 226  84535.29             2   85013.86
## 227  80700.43             2   84535.29
## 228  79740.57             2   80700.43
## 229  85163.14             2   79740.57
## 230  86724.86             2   85163.14
## 231  80355.00             2   86724.86
## 232  74875.14             2   80355.00
## 233  81347.00             2   74875.14
## 234  66062.43             2   81347.00
## 235  56946.43             2   66062.43
## 236  47732.14             2   56946.43
## 237  38129.71             2   47732.14
## 238  42928.29             2   38129.71
## 239  45392.57             2   42928.29
## 240  37895.43             2   45392.57
## 241  30660.29             2   37895.43
## 242  42430.86             2   30660.29
## 243  35845.14             2   42430.86
## 244  40350.43             2   35845.14
## 245  31494.71             2   40350.43
## 246  30013.29             2   31494.71
## 247  34197.57             2   30013.29
## 248  37430.14             2   34197.57
## 249  26932.43             2   37430.14
## 250  33729.86             2   26932.43
## 251  38081.43             2   33729.86
## 252  44028.00             2   38081.43
## 253  47139.71             2   44028.00
## 254  46558.86             2   47139.71
## 255  58350.57             2   46558.86
## 256  78380.00             2   58350.57
## 257  78168.29             2   78380.00
## 258  70510.86             2   78168.29
## 259  72207.14             2   70510.86
## 260  67881.00             2   72207.14
## 261  69536.43             2   67881.00
## 262  62390.71             2   69536.43
## 263  50113.14             2   62390.71
## 264  45565.57             2   50113.14
## 265  45805.29             2   45565.57
## 266  41348.57             2   45805.29
## 267  51426.86             2   41348.57
## 268  47160.57             2   51426.86
## 269  51907.43             2   47160.57
## 270  49751.43             2   51907.43
## 271  54407.43             2   49751.43
## 272  54746.29             2   54407.43
## 273  61634.57             2   54746.29
## 274  58926.43             2   61634.57
## 275  69999.29             2   58926.43
## 276  63044.86             2   69999.29
## 277  63285.29             2   63044.86
## 278  61395.43             2   63285.29
## 279  67969.43             2   61395.43
## 280  60792.57             2   67969.43
## 281  56859.14             2   60792.57
## 282  44899.43             2   56859.14
## 283  43064.14             2   44899.43
## 284  62790.29             2   43064.14
## 285  69120.71             2   62790.29
## 286  69589.43             2   69120.71
## 287  66633.29             2   69589.43
## 288  65588.57             2   66633.29
## 289  70168.57             2   65588.57
## 290  74644.71             2   70168.57
## 291  52891.00             2   74644.71
## 292  41560.57             2   52891.00
## 293  34704.86             2   41560.57
## 294  46520.00             2   34704.86
## 295  50231.00             2   46520.00
## 296  49216.71             2   50231.00
## 297  76914.86             2   49216.71
## 298  83720.71             2   76914.86
## 299  84485.00             2   83720.71
## 300  89765.00             2   84485.00
## 301  87702.86             2   89765.00
## 302  82013.86             2   87702.86
## 303  85982.43             2   82013.86
## 304  57248.43             2   85982.43
## 305  52968.43             2   57248.43
## 306  52601.86             2   52968.43
## 307  45493.29             2   52601.86
## 308  42298.86             2   45493.29
## 309  46423.71             2   42298.86
## 310  37898.00             2   46423.71
## 311  36435.14             2   37898.00
## 312  30209.57             2   36435.14
## 313  34541.86             2   30209.57
## 314  33604.71             2   34541.86
## 315  37990.71             2   33604.71
## 316  35683.43             2   37990.71
## 317  65201.86             2   35683.43
## 318  62730.57             2   65201.86
## 319  64589.14             2   62730.57
## 320  73744.86             2   64589.14
## 321  76477.71             2   73744.86
## 322 105647.43             2   76477.71
## 323 103790.29             2  105647.43
## 324  76122.29             2  103790.29
## 325  74746.14             2   76122.29
## 326  72865.71             2   74746.14
## 327  63652.57             2   72865.71
## 328  60358.29             2   63652.57
## 329  25957.14             2   60358.29
## 330  30178.43             2   25957.14
## 331  30681.57             2   30178.43
## 332  33337.29             2   30681.57
## 333  32582.71             2   33337.29
## 334  39184.43             2   32582.71
## 335  40415.71             2   39184.43
## 336  34975.43             2   40415.71
## 337  34076.14             2   34975.43
## 338  34221.14             2   34076.14
## 339  28862.57             2   34221.14
## 340  35729.86             2   28862.57
## 341  36489.29             2   35729.86
## 342  36785.14             2   36489.29
## 343  37787.71             2   36785.14
## 344  39832.14             2   37787.71
## 345  41917.86             2   39832.14
## 346  41633.57             2   41917.86
## 347  33557.00             2   41633.57
## 348  22759.57             2   33557.00
## 349  28877.86             2   22759.57
## 350  27574.00             2   28877.86
## 351  27104.71             2   27574.00
## 352  24376.14             2   27104.71
## 353  29732.29             2   24376.14
## 354  34030.00             2   29732.29
## 355  39139.71             2   34030.00
## 356  37066.57             2   39139.71
## 357  38509.29             2   37066.57
## 358  40957.29             2   38509.29
## 359  49423.00             2   40957.29
## 360  50053.29             2   49423.00
## 361  50284.14             2   50053.29
## 362  53103.86             2   50284.14
## 363  50223.00             2   53103.86
## 364  49587.14             2   50223.00
## 365  41167.71             2   49587.14
## 366  37958.71             2   41167.71
## 367  33582.29             2   37958.71
## 368  31039.43             2   33582.29
## 369  26526.57             2   31039.43
## 370  34869.43             2   26526.57
## 371  37487.43             2   34869.43
## 372  46514.43             2   37487.43
## 373  39613.43             2   46514.43
## 374  38980.57             2   39613.43
## 375  37306.14             2   38980.57
## 376  36771.29             2   37306.14
## 377  26317.00             2   36771.29
## 378  31580.71             2   26317.00
## 379  23626.57             2   31580.71
## 380  33035.71             2   23626.57
## 381  44864.57             2   33035.71
## 382  48946.14             2   44864.57
## 383  46969.57             2   48946.14
## 384  49249.57             2   46969.57
## 385  56370.14             2   49249.57
## 386  67228.71             2   56370.14
## 387  59457.29             2   67228.71
## 388  53124.71             2   59457.29
## 389  52814.14             2   53124.71
## 390  61262.00             2   52814.14
## 391  61861.14             2   61262.00
## 392  71784.71             2   61861.14
## 393  59313.29             2   71784.71
## 394  61107.00             2   59313.29
## 395  60603.43             2   61107.00
## 396  60012.57             2   60603.43
## 397  58280.43             2   60012.57
## 398  56862.71             2   58280.43
## 399  41704.43             2   56862.71
## 400  51533.00             2   41704.43
## 401  50388.71             2   51533.00
## 402  49205.29             2   50388.71
## 403  56533.29             2   49205.29
## 404  47996.14             2   56533.29
## 405  47207.57             2   47996.14
## 406  45292.00             2   47207.57
## 407  40343.43             2   45292.00
## 408  39004.86             2   40343.43
## 409  36788.43             2   39004.86
## 410  30027.57             2   36788.43
## 411  39040.14             2   30027.57
## 412  42390.14             2   39040.14
## 413  36291.14             2   42390.14
## 414  30668.29             2   36291.14
## 415  47693.00             2   30668.29
## 416  52094.43             2   47693.00
## 417  56592.57             2   52094.43
## 418  47971.43             2   56592.57
## 419  43762.43             2   47971.43
## 420  42246.71             2   43762.43
## 421  46352.43             2   42246.71
## 422  33094.86             2   46352.43
## 423  32784.86             2   33094.86
## 424  26212.43             2   32784.86
## 425  32611.57             2   26212.43
## 426  42144.86             2   32611.57
## 427  50034.86             2   42144.86
## 428  46332.00             2   50034.86
## 429  42976.29             2   46332.00
## 430  39456.29             2   42976.29
## 431  39328.29             2   39456.29
## 432  35296.14             2   39328.29
## 433  30875.43             2   35296.14
## 434  27709.00             2   30875.43
## 435  29513.29             2   27709.00
## 436  31630.43             2   29513.29
## 437  29346.14             2   31630.43
## 438  34916.86             2   29346.14
## 439  42020.86             2   34916.86
## 440  38303.00             2   42020.86
## 441  37966.43             2   38303.00
## 442  41408.14             2   37966.43
## 443  38988.14             2   41408.14
## 444  43555.29             2   38988.14
## 445  38114.00             2   43555.29
## 446  27847.86             2   38114.00
## 447  26517.00             2   27847.86
## 448  39518.29             2   26517.00
## 449  39153.71             2   39518.29
## 450  45623.14             2   39153.71
## 451  40627.43             2   45623.14
## 452  41027.71             2   40627.43
## 453  42882.86             2   41027.71
## 454  47139.43             2   42882.86
## 455  35547.57             2   47139.43
## 456  41099.00             2   35547.57
## 457  35859.57             2   41099.00
## 458  44524.57             2   35859.57
## 459  48554.29             2   44524.57
## 460  51554.29             2   48554.29
## 461  47810.29             2   51554.29
## 462  50490.00             2   47810.29
## 463  50720.71             2   50490.00
## 464  52720.71             2   50720.71
## 465  52145.57             2   52720.71
## 466  55515.57             2   52145.57
## 467  52457.00             2   55515.57
## 468  58239.57             2   52457.00
## 469  50523.57             2   58239.57
## 470  47788.57             2   50523.57
## 471  46170.00             2   47788.57
## 472  42305.57             2   46170.00
## 473  46605.57             2   42305.57
## 474  55149.57             2   46605.57
## 475  48769.57             2   55149.57
## 476  50719.43             2   48769.57
## 477  44753.71             2   50719.43
## 478  42898.00             2   44753.71
## 479  46141.14             2   42898.00
## 480  34022.57             2   46141.14
## 481  26651.86             2   34022.57
## 482  28791.86             2   26651.86
## 483  31879.00             2   28791.86
## 484  33584.71             2   31879.00
## 485  34690.43             2   33584.71
## 486  27410.43             2   34690.43
## 487  41755.00             2   27410.43
## 488  49379.57             2   41755.00
## 489  57198.86             2   49379.57
## 490  51144.57             2   57198.86
## 491  56677.43             2   51144.57
## 492  65416.43             2   56677.43
## 493  69779.71             2   65416.43
## 494  54046.00             2   69779.71
## 495  43259.57             2   54046.00
## 496  40998.57             2   43259.57
## 497  41368.57             2   40998.57
## 498  42274.29             2   41368.57
## 499  35962.71             2   42274.29
## 500  38709.00             2   35962.71
## 501  44778.14             2   38709.00
## 502  51282.43             2   44778.14
## 503  52094.86             2   51282.43
## 504  52221.43             2   52094.86
## 505  45011.43             2   52221.43
## 506  46545.43             2   45011.43
## 507  42263.00             2   46545.43
## 508  45417.43             2   42263.00
## 509  45034.71             2   45417.43
## 510  37840.57             2   45034.71
## 511  39135.43             2   37840.57
## 512  38191.14             2   39135.43
## 513  39456.86             2   38191.14
## 514  42479.14             2   39456.86
## 515  34282.57             2   42479.14
## 516  28878.43             2   34282.57
## 517  56227.14             2   28878.43
## 518  65569.43             2   56227.14
## 519  69751.29             2   65569.43
## 520  62171.71             2   69751.29
## 521  63705.14             2   62171.71
## 522  79257.86             2   63705.14
## 523  87244.71             2   79257.86
## 524  58568.00             2   87244.71
## 525  52695.29             2   58568.00
## 526  48911.00             2   52695.29
## 527  53924.00             2   48911.00
## 528  53358.86             2   53924.00
## 529  42121.14             2   53358.86
## 530  47835.71             2   42121.14
## 531  62329.29             2   47835.71
## 532  56056.86             2   62329.29
## 533  59946.43             2   56056.86
## 534  64511.57             2   59946.43
## 535  61137.43             2   64511.57
## 536  55448.71             2   61137.43
## 537  47964.43             2   55448.71
## 538  46425.71             2   47964.43
## 539  55512.00             2   46425.71
## 540  55226.29             2   55512.00
## 541  46709.14             2   55226.29
## 542  49254.71             2   46709.14
## 543  49056.29             2   49254.71
## 544  49850.57             2   49056.29
## 545  39145.71             2   49850.57
## 546  29799.43             2   39145.71
## 547  34769.86             2   29799.43
## 548  44061.57             2   34769.86
## 549  43829.14             2   44061.57
## 550  45782.00             2   43829.14
## 551  38924.57             2   45782.00
## 552  49242.43             2   38924.57
## 553  50565.00             2   49242.43
## 554  38864.43             2   50565.00
## 555  49786.71             2   38864.43
## 556  58787.86             2   49786.71
## 557  58060.86             2   58787.86
## 558  62179.43             2   58060.86
## 559  57333.86             2   62179.43
## 560  70797.00             2   57333.86
## 561  89901.71             2   70797.00
## 562  78558.14             2   89901.71
## 563  65466.00             2   78558.14
## 564  70525.00             2   65466.00
## 565  68377.86             2   70525.00
## 566  69736.29             2   68377.86
## 567  60085.86             2   69736.29
## 568  41757.00             2   60085.86
## 569  49780.29             2   41757.00
## 570  56540.29             2   49780.29
## 571  57894.29             2   56540.29
## 572  60270.29             2   57894.29
## 573  61011.00             2   60270.29
## 574  57721.43             2   61011.00
## 575  71741.00             2   57721.43
## 576  59576.00             2   71741.00
## 577  52390.29             2   59576.00
## 578  61092.29             2   52390.29
## 579  62814.00             2   61092.29
## 580  54908.29             2   62814.00
## 581  62082.00             2   54908.29
## 582  57017.71             2   62082.00
## 583  53634.43             2   57017.71
## 584  69169.00             2   53634.43
## 585  52488.14             2   69169.00
## 586  60895.57             2   52488.14
## 587  59856.57             2   60895.57
## 588  52670.00             2   59856.57
## 589  51874.57             2   52670.00
## 590  52190.57             2   51874.57
## 591  41562.43             2   52190.57
## 592  44764.14             2   41562.43
## 593  38612.71             2   44764.14
## 594  43473.14             2   38612.71
## 595  53505.00             2   43473.14
## 596  45870.86             2   53505.00
## 597  52578.00             2   45870.86
## 598  55300.00             2   52578.00
## 599  61789.71             2   55300.00
## 600  57391.71             2   61789.71
## 601  62902.29             2   57391.71
## 602  53250.43             2   62902.29
## 603  55402.57             2   53250.43
## 604  56291.29             2   55402.57
## 605  58933.57             2   56291.29
## 606  59590.71             2   58933.57
## 607  59065.00             2   59590.71
## 608  52399.57             2   59065.00
## 609  60483.43             2   52399.57
## 610  58262.71             2   60483.43
## 611  54939.71             2   58262.71
## 612  51169.00             2   54939.71
## 613  43113.29             2   51169.00
## 614  56289.71             2   43113.29
## 615  60739.86             2   56289.71
## 616  50363.14             2   60739.86
## 617  62270.86             2   50363.14
## 618  67061.57             2   62270.86
## 619  59609.00             2   67061.57
## 620  85054.00             2   59609.00
## 621  68023.29             2   85054.00
## 622  59242.29             2   68023.29
## 623  61535.14             2   59242.29
## 624  56215.86             2   61535.14
## 625  45152.29             2   56215.86
## 626  57409.57             2   45152.29
## 627  35151.43             2   57409.57
## 628  34991.43             2   35151.43
## 629  45944.71             2   34991.43
## 630  57944.71             2   45944.71
## 631  55706.29             2   57944.71
## 632  88593.71             2   55706.29
## 633  77359.43             2   88593.71
## 634  79878.71             2   77359.43
## 635  81753.00             2   79878.71
## 636  75716.00             2   81753.00
## 637  67381.43             2   75716.00
## 638  63528.57             2   67381.43
## 639  49682.86             2   63528.57
## 640  47815.00             2   49682.86
## 641  46546.14             2   47815.00
## 642  44808.71             2   46546.14
## 643  42959.57             2   44808.71
## 644  46023.86             2   42959.57
## 645  51309.57             2   46023.86
## 646  68447.29             2   51309.57
## 647  84959.29             2   68447.29
## 648  81666.29             2   84959.29
## 649  82700.86             2   81666.29
## 650  89422.14             2   82700.86
## 651 104812.71             2   89422.14
## 652  98812.71             2  104812.71
## 653  64779.86             2   98812.71
## 654  61862.86             2   64779.86
## 655  58376.43             2   61862.86
## 656  59503.57             2   58376.43
## 657  55429.43             2   59503.57
## 658  44454.57             2   55429.43
## 659  47184.00             2   44454.57
## 660  52126.71             2   47184.00
## 661  51202.00             2   52126.71
## 662  64437.14             2   51202.00
## 663  64297.14             2   64437.14
## 664  64628.57             2   64297.14
## 665  51413.14             2   64628.57
## 666  52969.43             2   51413.14
## 667  54135.29             2   52969.43
## 668  48799.43             2   54135.29
## 669  41907.86             2   48799.43
## 670  45382.00             2   41907.86
## 671  42633.29             2   45382.00
## 672  46624.71             2   42633.29
## 673  44051.86             2   46624.71
## 674  35852.86             2   44051.86
## 675  29737.71             2   35852.86
## 676  29734.86             2   29737.71
## 677  32881.71             2   29734.86
## 678  38298.57             2   32881.71
## 679  40886.14             2   38298.57
## 680  38601.86             2   40886.14
## 681  38628.86             2   38601.86
## 682  39142.57             2   38628.86
## 683  32666.14             2   39142.57
## 684  39911.57             2   32666.14
## 685  39336.29             2   39911.57
## 686  39678.86             2   39336.29
## 687  41963.14             2   39678.86
## 688  54220.57             2   41963.14
## 689  63901.86             2   54220.57
## 690  73116.00             2   63901.86
## 691  60863.86             2   73116.00
## 692  56293.86             2   60863.86
## 693  52725.00             2   56293.86
## 694  58625.00             2   52725.00
## 695  47513.00             2   58625.00
## 696  40300.14             2   47513.00
## 697  33312.43             2   40300.14
## 698  29556.71             2   33312.43
## 699  27816.71             2   29556.71
## 700  34120.29             2   27816.71
## 701  32132.57             2   34120.29
## 702  32902.57             2   32132.57
## 703  39694.14             2   32902.57
## 704  72501.29             2   39694.14
## 705  79551.14             2   72501.29
## 706  99637.71             2   79551.14
## 707  95424.29             2   99637.71
## 708  98395.14             2   95424.29
## 709 115594.71             2   98395.14
## 710 114267.57             2  115594.71
## 711  88353.29             2  114267.57
## 712  88750.86             2   88353.29
## 713  78835.71             2   88750.86
## 714  75519.14             2   78835.71
## 715  73202.86             2   75519.14
## 716  53433.29             2   73202.86
## 717  48165.71             2   53433.29
## 718  52163.14             2   48165.71
## 719  49306.86             2   52163.14
## 720  36846.86             2   49306.86
## 721  43220.57             2   36846.86
## 722  38952.29             2   43220.57
## 723  41522.29             2   38952.29
## 724  39090.00             2   41522.29
## 725  28452.57             2   39090.00
## 726  32975.00             2   28452.57
## 727  33690.71             2   32975.00
## 728  26405.29             2   33690.71
## 729  47087.43             2   26405.29
## 730  49660.29             2   47087.43
## 731  47409.71             2   49660.29
## 732  53881.71             2   47409.71
## 733  45189.57             2   53881.71
## 734  45503.86             2   45189.57
## 735  54640.14             2   45503.86
## 736  39131.29             2   54640.14
## 737  35024.14             2   39131.29
## 738  44755.43             2   35024.14
## 739  41063.29             2   44755.43
## 740  42783.29             2   41063.29
## 741  45952.57             2   42783.29
## 742  44937.43             2   45952.57
## 743  40838.43             2   44937.43
## 744  48838.43             2   40838.43
## 745  43139.14             2   48838.43
## 746  67134.29             2   43139.14
## 747  73224.29             2   67134.29
## 748  68770.71             2   73224.29
## 749  59539.29             2   68770.71
## 750  82179.86             2   59539.29
## 751  74252.14             2   82179.86
## 752  73015.00             2   74252.14
## 753  56116.43             2   73015.00
## 754 111885.00             2   56116.43
## 755 131425.14             2  111885.00
## 756 136678.00             2  131425.14
## 757 115531.29             2  136678.00
## 758 118310.86             2  115531.29
## 759 117449.43             2  118310.86
## 760 115193.57             2  117449.43
## 761  61025.43             2  115193.57
## 762  43913.86             2   61025.43
## 763  46099.29             2   43913.86
## 764  44524.86             2   46099.29
## 765  42208.71             2   44524.86
## 766 166486.57             2   42208.71
## 767 171565.29             2  166486.57
## 768 200415.71             2  171565.29
## 769 204498.14             2  200415.71
## 770 197558.86             2  204498.14
## 771 195266.57             2  197558.86
## 772 203144.29             2  195266.57
## 773  85493.71             2  203144.29
## 774  74721.57             2   85493.71
## 775  36232.14             2   74721.57
## 776  40161.71             2   36232.14
## 777  40629.86             2   40161.71
## 778  45663.71             2   40629.86
## 779  39252.29             2   45663.71
## 780  39618.57             2   39252.29
## 781  39438.43             2   39618.57
## 782  44650.71             2   39438.43
## 783  38626.71             2   44650.71
## 784  38280.43             2   38626.71
## 785  44134.14             2   38280.43
## 786  47596.43             2   44134.14
## 787  45598.43             2   47596.43
## 788  42564.29             2   45598.43
## 789  45699.14             2   42564.29
## 790  49553.86             2   45699.14
## 791  50018.43             2   49553.86
## 792  43772.86             2   50018.43
## 793  39235.43             2   43772.86
## 794  39905.00             2   39235.43
## 795  40374.43             2   39905.00
## 796  34230.57             2   40374.43
## 797  34324.14             2   34230.57
## 798  33491.57             2   34324.14
## 799  33366.43             2   33491.57
## 800  46646.86             2   33366.43
## 801  49770.86             2   46646.86
## 802  57339.86             2   49770.86
## 803  59799.14             2   57339.86
## 804  53577.14             2   59799.14
## 805  61775.29             2   53577.14
## 806  70627.86             2   61775.29
## 807  57888.43             2   70627.86
## 808  49960.71             2   57888.43
## 809  42923.71             2   49960.71
## 810  47284.86             2   42923.71
## 811  52284.86             2   47284.86
## 812  50191.00             2   52284.86
## 813  36465.86             2   50191.00
## 814  34525.14             2   36465.86
## 815  43199.14             2   34525.14
## 816  52757.43             2   43199.14
## 817  43200.86             2   52757.43
## 818  36772.29             2   43200.86
## 819  29568.00             2   36772.29
## 820  42362.00             2   29568.00
## 821  42566.29             2   42362.00
## 822  39596.00             2   42566.29
## 823  32925.00             2   39596.00
## 824  43416.57             2   32925.00
## 825  52624.86             2   43416.57
## 826  57733.71             2   52624.86
## 827  54120.57             2   57733.71
## 828  53353.43             2   54120.57
## 829  56286.86             2   53353.43
## 830  60626.86             2   56286.86
## 831  61375.29             2   60626.86
## 832  53710.86             2   61375.29
## 833  55795.57             2   53710.86
## 834  55130.14             2   55795.57
## 835  57700.14             2   55130.14
## 836  61333.14             2   57700.14
## 837  59230.71             2   61333.14
## 838  49195.00             2   59230.71
## 839  55436.43             2   49195.00
## 840  50353.14             2   55436.43
## 841  43194.86             2   50353.14
## 842  47539.71             2   43194.86
## 843  35271.00             2   47539.71
## 844  34774.86             2   35271.00
## 
## $alpha
## [1] 0.05
## 
## $itsa.result
## [1] "Significant variation between time periods with chosen alpha"
## 
## $group.means
##   interrupt_var count     mean      s.d.
## 1             0    37 22066.04  6308.636
## 2             1   120 29463.10  9187.258
## 3             2   687 53549.36 22054.259
## 
## $dependent
##   [1]  19269.29  24139.00  23816.14  26510.14  23456.71  24276.71  18818.71
##   [8]  18517.14  15475.29  16365.29  12621.29  12679.86  13440.71  15382.86
##  [15]  13459.71  14644.14  13927.00  22034.57  20986.00  20390.57  22554.14
##  [22]  21782.57  22529.57  24642.71  17692.29  19668.29  28640.00  28706.00
##  [29]  28331.57  25617.86  27223.29  31622.57  32021.43  33634.57  30784.86
##  [36]  34770.57  38443.00  35073.00  31422.29  30103.29  19319.29  27926.29
##  [43]  30715.43  31962.29  39790.14  39211.57  44548.57  49398.00  41039.00
##  [50]  34821.29  29123.57  21275.71  28476.14  24561.86  20323.57  25370.00
##  [57]  26811.86  27151.86  27623.29  22896.57  41889.29  44000.14  38558.00
##  [64]  43373.86  49001.00  61213.29  58939.57  42046.86  39191.71  42646.43
##  [71]  36121.57  30915.57  20273.43  23938.29  19274.29  21662.29  15819.00
##  [78]  18126.14  17240.71  16127.71  13917.14  15379.86  19510.14  24567.29
##  [85]  25700.43  25729.00  26435.00  31157.14  29818.43  30962.43  28746.71
##  [92]  27830.71  28252.14  28717.57  21365.43  24816.86  16838.57  15529.14
##  [99]  13286.29  13629.43  14404.86  19524.86  18475.71  22495.00  22254.57
## [106]  24173.29  27466.43  24602.43  20531.14  20846.43  23875.71  36312.71
## [113]  34244.00  36347.43  39779.71  42018.71  39372.57  33444.00  29255.86
## [120]  31640.14  29671.14  31023.71  39723.43  39314.14  38239.86  34649.43
## [127]  36688.43  42867.57  42226.86  32155.14  33603.00  37254.43  33145.57
## [134]  31299.43  30252.00  26310.71  27929.86  27666.14  25017.57  27335.00
## [141]  25760.71  18436.86  21906.00  19418.14  22826.14  23444.29  25264.86
## [148]  25473.29  27366.86  28855.86  32326.86  27141.43  26297.71  23499.14
## [155]  30246.29  39931.86  38020.43  35004.00  40750.86  42363.29  46273.57
## [162]  41083.29  35711.29  41921.71  60583.29  63115.57  61300.14  57666.43
## [169]  55834.00  58927.71  57810.57  48987.14  52219.29  56503.57  56545.00
## [176]  64705.57  53833.29  50114.00  39592.43  29907.29  33923.29  45489.00
## [183]  44866.29  51680.57  58257.00  70600.57  76648.00  69430.14  69651.57
## [190]  77745.14  72795.86  67670.71  55357.86  48524.00  50154.43  45111.57
## [197]  36147.00  43501.57  41472.43  41058.00  41605.57  49382.86  59558.57
## [204]  59134.57  61109.00  63004.43  67344.29  78180.86  69117.86  55597.57
## [211]  49426.14  39119.43  35636.86  39201.14  27777.00  47207.00  55587.29
## [218]  56619.71  82679.86  91259.57  93552.71 102242.71  91884.00  85013.86
## [225]  84535.29  80700.43  79740.57  85163.14  86724.86  80355.00  74875.14
## [232]  81347.00  66062.43  56946.43  47732.14  38129.71  42928.29  45392.57
## [239]  37895.43  30660.29  42430.86  35845.14  40350.43  31494.71  30013.29
## [246]  34197.57  37430.14  26932.43  33729.86  38081.43  44028.00  47139.71
## [253]  46558.86  58350.57  78380.00  78168.29  70510.86  72207.14  67881.00
## [260]  69536.43  62390.71  50113.14  45565.57  45805.29  41348.57  51426.86
## [267]  47160.57  51907.43  49751.43  54407.43  54746.29  61634.57  58926.43
## [274]  69999.29  63044.86  63285.29  61395.43  67969.43  60792.57  56859.14
## [281]  44899.43  43064.14  62790.29  69120.71  69589.43  66633.29  65588.57
## [288]  70168.57  74644.71  52891.00  41560.57  34704.86  46520.00  50231.00
## [295]  49216.71  76914.86  83720.71  84485.00  89765.00  87702.86  82013.86
## [302]  85982.43  57248.43  52968.43  52601.86  45493.29  42298.86  46423.71
## [309]  37898.00  36435.14  30209.57  34541.86  33604.71  37990.71  35683.43
## [316]  65201.86  62730.57  64589.14  73744.86  76477.71 105647.43 103790.29
## [323]  76122.29  74746.14  72865.71  63652.57  60358.29  25957.14  30178.43
## [330]  30681.57  33337.29  32582.71  39184.43  40415.71  34975.43  34076.14
## [337]  34221.14  28862.57  35729.86  36489.29  36785.14  37787.71  39832.14
## [344]  41917.86  41633.57  33557.00  22759.57  28877.86  27574.00  27104.71
## [351]  24376.14  29732.29  34030.00  39139.71  37066.57  38509.29  40957.29
## [358]  49423.00  50053.29  50284.14  53103.86  50223.00  49587.14  41167.71
## [365]  37958.71  33582.29  31039.43  26526.57  34869.43  37487.43  46514.43
## [372]  39613.43  38980.57  37306.14  36771.29  26317.00  31580.71  23626.57
## [379]  33035.71  44864.57  48946.14  46969.57  49249.57  56370.14  67228.71
## [386]  59457.29  53124.71  52814.14  61262.00  61861.14  71784.71  59313.29
## [393]  61107.00  60603.43  60012.57  58280.43  56862.71  41704.43  51533.00
## [400]  50388.71  49205.29  56533.29  47996.14  47207.57  45292.00  40343.43
## [407]  39004.86  36788.43  30027.57  39040.14  42390.14  36291.14  30668.29
## [414]  47693.00  52094.43  56592.57  47971.43  43762.43  42246.71  46352.43
## [421]  33094.86  32784.86  26212.43  32611.57  42144.86  50034.86  46332.00
## [428]  42976.29  39456.29  39328.29  35296.14  30875.43  27709.00  29513.29
## [435]  31630.43  29346.14  34916.86  42020.86  38303.00  37966.43  41408.14
## [442]  38988.14  43555.29  38114.00  27847.86  26517.00  39518.29  39153.71
## [449]  45623.14  40627.43  41027.71  42882.86  47139.43  35547.57  41099.00
## [456]  35859.57  44524.57  48554.29  51554.29  47810.29  50490.00  50720.71
## [463]  52720.71  52145.57  55515.57  52457.00  58239.57  50523.57  47788.57
## [470]  46170.00  42305.57  46605.57  55149.57  48769.57  50719.43  44753.71
## [477]  42898.00  46141.14  34022.57  26651.86  28791.86  31879.00  33584.71
## [484]  34690.43  27410.43  41755.00  49379.57  57198.86  51144.57  56677.43
## [491]  65416.43  69779.71  54046.00  43259.57  40998.57  41368.57  42274.29
## [498]  35962.71  38709.00  44778.14  51282.43  52094.86  52221.43  45011.43
## [505]  46545.43  42263.00  45417.43  45034.71  37840.57  39135.43  38191.14
## [512]  39456.86  42479.14  34282.57  28878.43  56227.14  65569.43  69751.29
## [519]  62171.71  63705.14  79257.86  87244.71  58568.00  52695.29  48911.00
## [526]  53924.00  53358.86  42121.14  47835.71  62329.29  56056.86  59946.43
## [533]  64511.57  61137.43  55448.71  47964.43  46425.71  55512.00  55226.29
## [540]  46709.14  49254.71  49056.29  49850.57  39145.71  29799.43  34769.86
## [547]  44061.57  43829.14  45782.00  38924.57  49242.43  50565.00  38864.43
## [554]  49786.71  58787.86  58060.86  62179.43  57333.86  70797.00  89901.71
## [561]  78558.14  65466.00  70525.00  68377.86  69736.29  60085.86  41757.00
## [568]  49780.29  56540.29  57894.29  60270.29  61011.00  57721.43  71741.00
## [575]  59576.00  52390.29  61092.29  62814.00  54908.29  62082.00  57017.71
## [582]  53634.43  69169.00  52488.14  60895.57  59856.57  52670.00  51874.57
## [589]  52190.57  41562.43  44764.14  38612.71  43473.14  53505.00  45870.86
## [596]  52578.00  55300.00  61789.71  57391.71  62902.29  53250.43  55402.57
## [603]  56291.29  58933.57  59590.71  59065.00  52399.57  60483.43  58262.71
## [610]  54939.71  51169.00  43113.29  56289.71  60739.86  50363.14  62270.86
## [617]  67061.57  59609.00  85054.00  68023.29  59242.29  61535.14  56215.86
## [624]  45152.29  57409.57  35151.43  34991.43  45944.71  57944.71  55706.29
## [631]  88593.71  77359.43  79878.71  81753.00  75716.00  67381.43  63528.57
## [638]  49682.86  47815.00  46546.14  44808.71  42959.57  46023.86  51309.57
## [645]  68447.29  84959.29  81666.29  82700.86  89422.14 104812.71  98812.71
## [652]  64779.86  61862.86  58376.43  59503.57  55429.43  44454.57  47184.00
## [659]  52126.71  51202.00  64437.14  64297.14  64628.57  51413.14  52969.43
## [666]  54135.29  48799.43  41907.86  45382.00  42633.29  46624.71  44051.86
## [673]  35852.86  29737.71  29734.86  32881.71  38298.57  40886.14  38601.86
## [680]  38628.86  39142.57  32666.14  39911.57  39336.29  39678.86  41963.14
## [687]  54220.57  63901.86  73116.00  60863.86  56293.86  52725.00  58625.00
## [694]  47513.00  40300.14  33312.43  29556.71  27816.71  34120.29  32132.57
## [701]  32902.57  39694.14  72501.29  79551.14  99637.71  95424.29  98395.14
## [708] 115594.71 114267.57  88353.29  88750.86  78835.71  75519.14  73202.86
## [715]  53433.29  48165.71  52163.14  49306.86  36846.86  43220.57  38952.29
## [722]  41522.29  39090.00  28452.57  32975.00  33690.71  26405.29  47087.43
## [729]  49660.29  47409.71  53881.71  45189.57  45503.86  54640.14  39131.29
## [736]  35024.14  44755.43  41063.29  42783.29  45952.57  44937.43  40838.43
## [743]  48838.43  43139.14  67134.29  73224.29  68770.71  59539.29  82179.86
## [750]  74252.14  73015.00  56116.43 111885.00 131425.14 136678.00 115531.29
## [757] 118310.86 117449.43 115193.57  61025.43  43913.86  46099.29  44524.86
## [764]  42208.71 166486.57 171565.29 200415.71 204498.14 197558.86 195266.57
## [771] 203144.29  85493.71  74721.57  36232.14  40161.71  40629.86  45663.71
## [778]  39252.29  39618.57  39438.43  44650.71  38626.71  38280.43  44134.14
## [785]  47596.43  45598.43  42564.29  45699.14  49553.86  50018.43  43772.86
## [792]  39235.43  39905.00  40374.43  34230.57  34324.14  33491.57  33366.43
## [799]  46646.86  49770.86  57339.86  59799.14  53577.14  61775.29  70627.86
## [806]  57888.43  49960.71  42923.71  47284.86  52284.86  50191.00  36465.86
## [813]  34525.14  43199.14  52757.43  43200.86  36772.29  29568.00  42362.00
## [820]  42566.29  39596.00  32925.00  43416.57  52624.86  57733.71  54120.57
## [827]  53353.43  56286.86  60626.86  61375.29  53710.86  55795.57  55130.14
## [834]  57700.14  61333.14  59230.71  49195.00  55436.43  50353.14  43194.86
## [841]  47539.71  35271.00  34774.86
## 
## $interrupt_var
##   [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [297] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [334] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [408] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [445] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [482] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [519] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [593] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [630] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [667] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [741] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [778] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [815] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## Levels: 0 1 2
## 
## $residuals
##             2             3             4             5             6 
##   2020.793442   4041.189245   -538.848193   2437.398565  -2971.166888 
##             7             8             9            10            11 
##    518.188065  -5656.668744  -1186.771317  -3964.990006   -415.750978 
##            12            13            14            15            16 
##  -4937.802880  -1606.168169   -896.515084    380.474574  -3240.519905 
##            17            18            19            20            21 
##   -374.849808  -2127.438623   6607.070293  -1529.266721  -1208.017771 
##            22            23            24            25            26 
##   1476.086616  -1186.912751    234.607044   1694.710833  -7103.060232 
##            27            28            29            30            31 
##    949.112992   8193.377212    416.164443    -15.962359  -2402.345339 
##            32            33            34            35            36 
##   1575.454650   4571.249630   1124.182484   2388.638196  -1871.310773 
##            37            38            39            40            41 
##   4605.668255   4302.424935  -2278.069487  -2982.677132  -1110.165678 
##            42            43            44            45            46 
## -10741.075275   7293.465974   2558.234987   1366.779877   8104.615030 
##            47            48            49            50            51 
##    682.808614   6525.604794   6709.344600  -5889.101606  -4799.247522 
##            52            53            54            55            56 
##  -5061.338857  -7928.165172   6132.982699  -4076.030145  -4892.386145 
##            57            58            59            60            61 
##   3859.218001    889.408460    -31.085577    143.109684  -4995.734823 
##            62            63            64            65            66 
##  18129.146924   3636.276567  -3651.210576   5922.252860   7339.298178 
##            67            68            69            70            71 
##  14632.247709   1682.362493 -13222.635248  -1309.903408   4640.821361 
##            72            73            74            75            76 
##  -4904.200974  -4406.068940 -10497.045278   2471.339384  -5396.535976 
##            77            78            79            80            81 
##   1068.805676  -6862.106939    553.327563  -2349.041332  -2687.985844 
##            82            83            84            85            86 
##  -3925.555288   -530.324929   2321.233108   3767.615678    479.725256 
##            87            88            89            90            91 
##   -482.314502    198.707909   4303.654539  -1163.230794   1151.094146 
##            92            93            94            95            96 
##  -2064.722810  -1043.710771    178.499309    275.508440  -7483.519344 
##            97            98            99           100           101 
##   2395.267355  -8600.311129  -2934.997706  -4033.131938  -1729.248332 
##           102           103           104           105           106 
##  -1253.800607   3188.307624  -2336.819209   2599.643579  -1154.507346 
##           107           108           109           110           111 
##    974.393352   2590.166210  -3152.750715  -4720.282893   -845.815613 
##           112           113           114           115           116 
##   1907.842405  11696.593515  -1244.740440   2667.190474   4260.626075 
##           117           118           119           120           121 
##   3499.068291  -1104.443340  -4719.715350  -3725.008458   2320.617162 
##           122           123           124           125           126 
##  -1732.762653   1341.139332   8858.414547    843.702713    127.220963 
##           127           128           129           130           131 
##  -2524.050256   2653.758484   7050.375692   1007.758201  -8503.833649 
##           132           133           134           135           136 
##   1748.873446   4134.562687  -3166.430349  -1420.546111   -854.047759 
##           137           138           139           140           141 
##  -3879.655055   1185.021337   -494.172926  -2912.201206   1720.649879 
##           142           143           144           145           146 
##  -1879.568091  -7827.160072   2044.613100  -3476.022917   2106.900658 
##           147           148           149           150           151 
##   -254.283319   1025.897969   -357.245441   1354.114475   1187.724754 
##           152           153           154           155           156 
##   3357.017696  -4862.813294  -1173.344925  -3234.328146   5959.369569 
##           157           158           159           160           161 
##   9746.483320  -3617.735137  -4963.162994   3420.703123      9.139413 
##           162           163           164           165           166 
##   2509.814884  -6098.903682  -6933.474837   3973.240047  17205.557810 
##           167           168           169           170           171 
##   3423.606283   -605.586015  -2652.224286  -1308.003070   3387.648896 
##           172           173           174           175           176 
##   -434.067314  -8280.872150   2664.849789   4123.545730    419.584809 
##           177           178           179           180           181 
##   8543.938733  -9462.445994  -3677.009709 -10947.123470 -11434.144235 
##           182           183           184           185           186 
##   1048.758935   9103.623290  -1630.019084   5728.653186   6347.926745 
##           187           188           189           190           191 
##  12942.281591   8198.767210  -4305.846452   2225.545578  10125.540691 
##           192           193           194           195           196 
##  -1899.271590  -2697.671567 -10530.048768  -6599.813866   1004.879366 
##           197           198           199           200           201 
##  -5463.323902 -10019.350845   5172.188955  -3286.435125  -1926.955315 
##           202           203           204           205           206 
##  -1017.083956   6281.506262   9658.195893    338.427517   2683.523512 
##           207           208           209           210           211 
##   2852.875785   5535.719664  12578.320188  -5958.179824 -11555.449372 
##           212           213           214           215           216 
##  -5907.232982 -10818.788011  -5291.068818   1317.735238 -13222.361866 
##           217           218           219           220           221 
##  16194.802268   7589.078481   1295.330379  26452.908052  12250.438386 
##           222           223           224           225           226 
##   7043.060997  13728.359692  -4227.288334  -2041.681357   3485.733414 
##           227           228           229           230           231 
##     69.250889   2461.885762   8723.579298   5544.796939  -2190.335227 
##           232           233           234           235           236 
##  -2101.563757   9160.870097 -11781.499938  -7535.488846  -8780.424966 
##           237           238           239           240           241 
## -10327.581036   2865.583442   1134.883058  -8516.576863  -9197.600327 
##           242           243           244           245           246 
##   8898.046002  -7977.685686   2284.934327 -10509.371104  -4248.995918 
##           247           248           249           250           251 
##   1230.377794    804.981291 -12518.697431   3455.996946   1865.150140 
##           252           253           254           255           256 
##   4007.509853   1920.638509  -1380.527868  10918.980805  20639.908558 
##           257           258           259           260           261 
##   2918.154951  -4554.189685   3836.339697  -1972.722628   3464.687605 
##           262           263           264           265           266 
##  -5128.228196 -11158.904578  -4973.231285   -757.959023  -5424.235281 
##           267           268           269           270           271 
##   8550.179677  -4526.700835   3949.809920  -2355.966741   4184.842136 
##           272           273           274           275           276 
##    453.351351   7045.402858  -1684.586967  11755.770963  -4878.722283 
##           277           278           279           280           281 
##   1441.376375   -658.667180   7567.475454  -5356.475177  -3015.783129 
##           282           283           284           285           286 
## -11536.832717  -2916.749389  18413.828907   7499.355266   2433.910012 
##           287           288           289           290           291 
##   -931.990196    607.601780   6100.907327   6573.142644 -19093.685646 
##           292           293           294           295           296 
## -11406.677391  -8357.154035   9451.361339   2833.378898  -1425.120984 
##           297           298           299           300           301 
##  27159.726288   9751.434294   4565.933384   9177.782875   2499.781543 
##           302           303           304           305           306 
##  -1386.460960   7555.523132 -24647.864001  -3808.152369   -433.080943 
##           307           308           309           310           311 
##  -7221.189903  -4201.194294   2716.282204  -9415.446627  -3424.991168 
##           312           313           314           315           316 
##  -8371.710032   1403.067470  -3321.427229   1883.837695  -4257.757730 
##           317           318           319           320           321 
##  27277.736053   -999.021004   3019.986999  10550.909110   5279.697810 
##           322           323           324           325           326 
##  32060.305693   4702.542969 -21341.913736   1469.741188    792.358198 
##           327           328           329           330           331 
##  -6776.884629  -2016.896946 -33538.123774    757.178380  -2429.992672 
##           332           333           334           335           336 
##   -214.133731  -3290.372071   3971.000344   -569.035690  -7085.730609 
##           337           338           339           340           341 
##  -3229.033573  -2297.863955  -7783.196648   3768.635911  -1475.423958 
##           342           343           344           345           346 
##  -1843.471135  -1099.542642     68.422327    366.865221  -1740.784502 
##           347           348           349           350           351 
##  -9568.828918 -13305.592589   2251.973841  -4400.584242  -3730.017676 
##           352           353           354           355           356 
##  -6048.332202   1693.170419   1308.460954   2661.046280  -3879.088621 
##           357           358           359           360           361 
##   -624.000466    562.756170   6888.390617    117.816666   -202.331808 
##           362           363           364           365           366 
##   2415.563558  -2930.331858  -1047.698687  -8911.251012  -4759.855041 
##           367           368           369           370           371 
##  -6330.925687  -5047.840612  -7337.692321   4950.375028    274.918997 
##           372           373           374           375           376 
##   7013.222503  -7779.321901  -2379.217049  -3500.392020  -2571.437551 
##           377           378           379           380           381 
## -12558.142797   1844.871359 -10710.892747   5651.886041   9255.123525 
##           382           383           384           385           386 
##   2995.723270  -2549.021657   1458.927961   6586.287775  11219.944436 
##           387           388           389           390           391 
##  -6044.216892  -5582.884072   -357.422641   8361.940896   1575.835081 
##           392           393           394           395           396 
##  10975.626465 -10171.143258   2525.288692    453.624216    302.997082 
##           397           398           399           400           401 
##   -912.609231   -816.057175 -14734.954915   8345.226661  -1391.349721 
##           402           403           404           405           406 
##  -1574.425847   6788.145896  -8155.249027  -1480.516817  -2706.706785 
##           407           408           409           410           411 
##  -5980.655749  -2993.108737  -4039.337257  -8862.557921   6060.460428 
##           412           413           414           415           416 
##   1531.529706  -7496.092622  -7787.108697  14153.195134   3671.352546 
##           417           418           419           420           421 
##   4321.697795  -8231.791810  -4904.054060  -2740.194800   2690.580590 
##           422           423           424           425           426 
## -14156.270399  -2876.294370  -9177.716099   2967.146478   6906.201551 
##           427           428           429           430           431 
##   6462.054267  -4138.364120  -4256.982852  -4843.365006  -1894.126023 
##           432           433           434           435           436 
##  -5814.369280  -6710.121297  -6011.892388  -1439.465356   -899.657253 
##           437           438           439           440           441 
##  -5034.782324   2532.890215   4766.884770  -5161.400139  -2247.762779 
##           442           443           444           445           446 
##   1488.187506  -3940.612883   2742.131776  -6691.821564 -12201.107456 
##           447           448           449           450           451 
##  -4557.142153   9607.599664  -2122.898820   4665.243789  -5986.146008 
##           452           453           454           455           456 
##  -1218.528830    286.678003   2921.454568 -12391.563807   3293.647347 
##           457           458           459           460           461 
##  -6798.926797   6446.463502   2901.099438   2378.260264  -3988.386596 
##           462           463           464           465           466 
##   1964.390971   -147.542829   1650.763138   -672.810959   3199.987910 
##           467           468           469           470           471 
##  -2804.690158   5651.732189  -7119.482079  -3109.034354  -2336.626061 
##           472           473           474           475           476 
##  -4786.074207   2892.269614   7677.142447  -6172.155813   1355.196987 
##           477           478           479           480           481 
##  -6315.112870  -2955.506541   1909.930731 -13043.846842  -9820.316690 
##           482           483           484           485           486 
##  -1236.723129    -20.401699  -1013.515921  -1398.963707  -9645.596407 
##           487           488           489           490           491 
##  11063.264737   6147.587757   7301.354030  -5588.673395   5236.934889 
##           492           493           494           495           496 
##   9139.024750   5862.540159 -13685.626654 -10717.396432  -3548.732088 
##           497           498           499           500           501 
##  -1202.130571   -619.876064  -7723.237069    540.722976   4209.019964 
##           502           503           504           505           506 
##   5407.566191    533.846593    -49.819726  -7370.470446    466.624176 
##           507           508           509           510           511 
##  -5156.851157   1741.343364  -1399.021651  -8258.589702   -674.500499 
##           512           513           514           515           516 
##  -2750.770554   -659.546947   1256.231568  -9582.469240  -7821.041322 
##           517           518           519           520           521 
##  24252.059063   9685.671555   5700.356598  -5535.059667   2624.548642 
##           522           523           524           525           526 
##  16836.715718  11227.147095 -24431.802461  -5234.885181  -3885.152333 
##           527           528           529           530           531 
##   4436.129349   -511.456412 -11255.113984   4283.642809  13781.446631 
##           532           533           534           535           536 
##  -5161.488476   4211.537987   5376.356745  -1988.705307  -4727.691202 
##           537           538           539           540           541 
##  -7238.814028  -2234.648836   8196.804942    -32.282246  -8299.649211 
##           542           543           544           545           546 
##   1691.741543   -732.065334    235.689737 -11163.544384 -11151.476771 
##           547           548           549           550           551 
##   1989.620763   6936.108752  -1419.281587    736.768244  -7827.878546 
##           552           553           554           555           556 
##   8484.849769    787.389315 -12069.394715   9081.713308   8534.423385 
##           557           558           559           560           561 
##    -61.516301   4692.609884  -3753.481021  13945.736068  21280.760570 
##           562           563           564           565           566 
##  -6764.450507  -9939.866032   6564.489756     -5.309924   3230.184472 
##           567           568           569           570           571 
##  -7607.803575 -17500.105319   6546.553611   6292.471914   1736.774321 
##           572           573           574           575           576 
##   2929.086371   1592.664343  -2344.451084  14550.915071  -9870.213261 
##           577           578           579           580           581 
##  -6421.094526   8562.769145   2677.059103  -6733.804705   7351.208499 
##           582           583           584           585           586 
##  -3984.450299  -2940.458337  15551.834311 -14709.587828   8280.506616 
##           587           588           589           590           591 
##   -108.398767  -6386.660166   -899.475738    111.900343 -10792.494650 
##           592           593           594           595           596 
##   1700.508136  -7249.909076   2988.194440   8770.989004  -7633.160067 
##           597           598           599           600           601 
##   5747.869723   2606.380670   6716.480037  -3354.929562   6000.442164 
##           602           603           604           605           606 
##  -8468.842598   2121.104538   1128.381921   2993.739725   1340.955137 
##           607           608           609           610           611 
##    240.756301  -5965.084630   7945.794286  -1341.954186  -2723.571069 
##           612           613           614           615           616 
##  -3589.266849  -8348.563807  11870.296026   4801.399206  -9465.699477 
##           617           618           619           620           621 
##  11513.500524   5894.304979  -5746.383710  26213.770644 -13061.360099 
##           622           623           624           625           626 
##  -6953.843646   3015.500858  -4308.236386 -10721.605154  11207.627519 
##           627           628           629           630           631 
## -21766.025972  -2467.609808   8625.550405  11050.016941  -1678.999074 
##           632           633           634           635           636 
##  33165.298720  -6819.690762   5520.783006   5192.669797  -2482.860051 
##           637           638           639           640           641 
##  -5539.791780  -2106.436392 -12583.922781  -2347.640221  -1983.587474 
##           642           643           644           645           646 
##  -2611.761311  -2942.016972   1738.818312   4345.686162  16862.546455 
##           647           648           649           650           651 
##  18392.488931    664.440609   4577.804075  10394.651286  19909.369755 
##           652           653           654           655           656 
##    454.691808 -28332.871614  -1497.816297  -2434.157905   1740.875269 
##           657           658           659           660           661 
##  -3318.633481 -10731.811299   1592.008817   4148.614011  -1097.098309 
##           662           663           664           665           666 
##  12946.444221   1236.075599   1689.894357 -11815.274249   1294.145551 
##           667           668           669           670           671 
##   1099.473413  -5255.594255  -7482.476022   2016.386226  -3769.478012 
##           672           673           674           675           676 
##   2624.919523  -3437.306824  -9387.074921  -8334.523908  -2991.427645 
##           677           678           679           680           681 
##    157.927257   2823.752731    675.823033  -3870.558043  -1846.599791 
##           682           683           684           685           686 
##  -1356.489327  -8282.014951   4625.208641  -2284.143906  -1438.648720 
##           687           688           689           690           691 
##    546.155701  10806.626020   9772.276213  10522.887874  -9784.402596 
##           692           693           694           695           696 
##  -3643.387929  -3217.079687   5802.870974 -10467.001186  -7965.574356 
##           697           698           699           700           701 
##  -8647.696261  -6294.641568  -4751.337475   3073.369133  -4425.025759 
##           702           703           704           705           706 
##  -1917.334882   4201.090519  31070.935548   9440.275949  23363.752143 
##           707           708           709           710           711 
##   1590.329071   8244.631286  22847.032995   6483.756133 -18270.320565 
##           712           713           714           715           716 
##   4781.924223  -5480.781788   -129.380453    453.732381 -17290.905895 
##           717           718           719           720           721 
##  -5275.609175   3326.812620  -3024.087593 -12987.078005   4279.362909 
##           722           723           724           725           726 
##  -5560.923393    740.478650  -3938.541208 -12449.627615   1372.207172 
##           727           728           729           730           731 
##  -1865.656240  -9776.773420  17274.404894   1766.609691  -2733.193640 
##           732           733           734           735           736 
##   5706.291057  -8643.775294   -730.682521   8130.849713 -15365.091113 
##           737           738           739           740           741 
##  -5914.148803   7407.665351  -4791.719482    156.009476   1821.644323 
##           742           743           744           745           746 
##  -1964.137611  -5175.683868   6407.725959  -6285.284717  22692.262736 
##           747           748           749           750           751 
##   7805.334040  -1972.210516  -7310.257379  23400.573104  -4319.882376 
##           752           753           754           755           756 
##   1373.506429 -14443.535390  56098.031142  26884.417737  15054.976772 
##           757           758           759           760           761 
## -10683.867279  10582.492095   7291.118763   5788.335933 -46407.701372 
##           762           763           764           765           766 
## -16164.636195    979.995406  -2504.968959  -3444.721766 122857.943641 
##           767           768           769           770           771 
##  19291.013961  43701.551173  22562.484436  12054.275896  15828.422147 
##           772           773           774           775           776 
##  25710.088410 -98827.303899  -6747.479482 -35819.732504   1757.898596 
##           777           778           779           780           781 
##  -1209.251270   3415.348074  -7396.757041  -1425.500322  -1925.855872 
##           782           783           784           785           786 
##   3443.913542  -7136.748047  -2216.758865   3939.683802   2284.561051 
##           787           788           789           790           791 
##  -2740.223202  -4027.683250   1759.668972   2873.842177    -31.437835 
##           792           793           794           795           796 
##  -6683.144863  -5760.597334  -1124.334973  -1240.256203  -7794.495136 
##           797           798           799           800           801 
##  -2329.867824  -3244.240857  -2641.536767  10748.293645   2262.335545 
##           802           803           804           805           806 
##   7100.285947   2942.633631  -5429.312355   8208.200092   9893.826978 
##           807           808           809           810           811 
## -10584.657816  -7375.364652  -7481.832990   3031.165187   4218.585979 
##           812           813           814           815           816 
##  -2246.349265 -14141.009502  -4082.989511   6287.613232   8262.952656 
##           817           818           819           820           821 
##  -9649.621447  -7723.688857  -9308.017012   9784.082092  -1196.346839 
##           822           823           824           825           826 
##  -4345.222316  -8419.552148   7903.911683   7940.301774   4999.131710 
##           827           828           829           830           831 
##  -3080.253864   -688.730797   2915.346043   4690.896965   1645.229745 
##           832           833           834           835           836 
##  -6673.486774   2111.590689   -376.327675   2775.400376   4161.666232 
##           837           838           839           840           841 
##  -1116.787688  -9314.526076   5700.280685  -4839.359379  -7553.757320 
##           842           843           844 
##   3048.985008 -13018.071259  -2788.712447 
## 
## $fitted.values
##         2         3         4         5         6         7         8         9 
##  17248.49  20097.81  24354.99  24072.74  26427.88  23758.53  24475.38  19703.91 
##        10        11        12        13        14        15        16        17 
##  19440.28  16781.04  17559.09  14286.03  14337.23  15002.38  16700.23  15018.99 
##        18        19        20        21        22        23        24        25 
##  16054.44  15427.50  22515.27  21598.59  21078.06  22969.48  22294.96  22948.00 
##        26        27        28        29        30        31        32        33 
##  24795.35  18719.17  20446.62  28289.84  28347.53  28020.20  25647.83  27051.32 
##        34        35        36        37        38        39        40        41 
##  30897.25  31245.93  32656.17  30164.90  34140.58  37351.07  34404.96  31213.45 
##        42        43        44        45        46        47        48        49 
##  30060.36  20632.82  28157.19  30595.51  31685.53  38528.76  38022.97  42688.66 
##        50        51        52        53        54        55        56        57 
##  46928.10  39620.53  34184.91  29203.88  22343.16  28637.89  25215.96  21510.78 
##        58        59        60        61        62        63        64        65 
##  25922.45  27182.94  27480.18  27892.31  23760.14  40363.87  42209.21  37451.60 
##        66        67        68        69        70        71        72        73 
##  41661.70  46581.04  57257.21  55269.49  40501.62  38005.61  41025.77  35321.64 
##        74        75        76        77        78        79        80        81 
##  30770.47  21466.95  24670.82  20593.48  22681.11  17572.82  19589.76  18815.70 
##        82        83        84        85        86        87        88        89 
##  17842.70  15910.18  17188.91  20799.67  25220.70  26211.31  26236.29  26853.49 
##        90        91        92        93        94        95        96        97 
##  30981.66  29811.33  30811.44  28874.43  28073.64  28442.06  28848.95  22421.59 
##        98        99       100       101       102       103       104       105 
##  25438.88  18464.14  17319.42  15358.68  15658.66  16336.55  20812.53  19895.36 
##       106       107       108       109       110       111       112       113 
##  23409.08  23198.89  24876.26  27755.18  25251.43  21692.24  21967.87  24616.12 
##       114       115       116       117       118       119       120       121 
##  35488.74  33680.24  35519.09  38519.65  40477.01  38163.72  32980.87  29319.53 
##       122       123       124       125       126       127       128       129 
##  31403.91  29682.57  30865.01  38470.44  38112.64  37173.48  34034.67  35817.20 
##       130       131       132       133       134       135       136       137 
##  41219.10  40658.98  31854.13  33119.87  36312.00  32719.97  31106.05  30190.37 
##       138       139       140       141       142       143       144       145 
##  26744.84  28160.32  27929.77  25614.35  27640.28  26264.02  19861.39  22894.17 
##       146       147       148       149       150       151       152       153 
##  20719.24  23698.57  24238.96  25830.53  26012.74  27668.13  28969.84  32004.24 
##       154       155       156       157       158       159       160       161 
##  27471.06  26733.47  24286.92  30185.37  41638.16  39967.16  37330.15  42354.15 
##       162       163       164       165       166       167       168       169 
##  43763.76  47182.19  42644.76  37948.47  43377.73  59691.97  61905.73  60318.65 
##       170       171       172       173       174       175       176       177 
##  57142.00  55540.07  58244.64  57268.02  49554.44  52380.03  56125.42  56161.63 
##       178       179       180       181       182       183       184       185 
##  63295.73  53791.01  50539.55  41341.43  32874.53  36385.38  46496.30  45951.92 
##       186       187       188       189       190       191       192       193 
##  51909.07  57658.29  68449.23  73735.99  67426.03  67619.60  74695.13  70368.39 
##       194       195       196       197       198       199       200       201 
##  65887.91  55123.81  49149.55  50574.90  46166.35  38329.38  44758.86  42984.96 
##       202       203       204       205       206       207       208       209 
##  42622.66  43101.35  49900.38  58796.14  58425.48  60151.55  61808.57  65602.54 
##       210       211       212       213       214       215       216       217 
##  75076.04  67153.02  55333.38  49938.22  40927.93  37883.41  40999.36  31012.20 
##       218       219       220       221       222       223       224       225 
##  47998.21  55324.38  56226.95  79009.13  86509.65  88514.35  96111.29  87055.54 
##       226       227       228       229       230       231       232       233 
##  81049.55  80631.18  77278.69  76439.56  81180.06  82545.34  76976.71  72186.13 
##       234       235       236       237       238       239       240       241 
##  77843.93  64481.92  56512.57  48457.30  40062.70  44257.69  46412.01  39857.89 
##       242       243       244       245       246       247       248       249 
##  33532.81  43822.83  38065.49  42004.09  34262.28  32967.19  36625.16  39451.13 
##       250       251       252       253       254       255       256       257 
##  30273.86  36216.28  40020.49  45219.08  47939.39  47431.59  57740.09  75250.13 
##       258       259       260       261       262       263       264       265 
##  75065.05  68370.80  69853.72  66071.74  67518.94  61272.05  50538.80  46563.24 
##       266       267       268       269       270       271       272       273 
##  46772.81  42876.68  51687.27  47957.62  52107.40  50222.59  54292.93  54589.17 
##       274       275       276       277       278       279       280       281 
##  60611.02  58243.51  67923.58  61843.91  62054.10  60401.95  66149.05  59874.93 
##       282       283       284       285       286       287       288       289 
##  56436.26  45980.89  44376.46  61621.36  67155.52  67565.28  64980.97  64067.66 
##       290       291       292       293       294       295       296       297 
##  68071.57  71984.69  52967.25  43062.01  37068.64  47397.62  50641.84  49755.13 
##       298       299       300       301       302       303       304       305 
##  73969.28  79919.07  80587.22  85203.08  83400.32  78426.91  81896.29  56776.58 
##       306       307       308       309       310       311       312       313 
##  53034.94  52714.48  46500.05  43707.43  47313.45  39860.13  38581.28  33138.79 
##       314       315       316       317       318       319       320       321 
##  36926.14  36106.88  39941.19  37924.12  63729.59  61569.16  63193.95  71198.02 
##       322       323       324       325       326       327       328       329 
##  73587.12  99087.74  97464.20  73276.40  72073.36  70429.46  62375.18  59495.27 
##       330       331       332       333       334       335       336       337 
##  29421.25  33111.56  33551.42  35873.09  35213.43  40984.75  42061.16  37305.18 
##       338       339       340       341       342       343       344       345 
##  36519.01  36645.77  31961.22  37964.71  38628.61  38887.26  39763.72  41550.99 
##       346       347       348       349       350       351       352       353 
##  43374.36  43125.83  36065.16  26625.88  31974.58  30834.73  30424.48  28039.12 
##       354       355       356       357       358       359       360       361 
##  32721.54  36478.67  40945.66  39133.29  40394.53  42534.61  49935.47  50486.47 
##       362       363       364       365       366       367       368       369 
##  50688.29  53153.33  50634.84  50078.97  42718.57  39913.21  36087.27  33864.26 
##       370       371       372       373       374       375       376       377 
##  29919.05  37212.51  39501.21  47392.75  41359.79  40806.53  39342.72  38875.14 
##       378       379       380       381       382       383       384       385 
##  29735.84  34337.46  27383.83  35609.45  45950.42  49518.59  47790.64  49783.86 
##       386       387       388       389       390       391       392       393 
##  56008.77  65501.50  58707.60  53171.57  52900.06  60285.31  60809.09  69484.43 
##       394       395       396       397       398       399       400       401 
##  58581.71  60149.80  59709.57  59193.04  57678.77  56439.38  43187.77  51780.06 
##       402       403       404       405       406       407       408       409 
##  50779.71  49745.14  56151.39  48688.09  47998.71  46324.08  41997.97  40827.77 
##       410       411       412       413       414       415       416       417 
##  38890.13  32979.68  40858.61  43787.24  38455.39  33539.80  48423.08  52270.87 
##       418       419       420       421       422       423       424       425 
##  56203.22  48666.48  44986.91  43661.85  47251.13  35661.15  35390.14  29644.42 
##       426       427       428       429       430       431       432       433 
##  35238.66  43572.80  50470.36  47233.27  44299.65  41222.41  41110.51  37585.55 
##       434       435       436       437       438       439       440       441 
##  33720.89  30952.75  32530.09  34380.93  32383.97  37253.97  43464.40  40214.19 
##       442       443       444       445       446       447       448       449 
##  39919.96  42928.76  40813.15  44805.82  40048.96  31074.14  29910.69  41276.61 
##       450       451       452       453       454       455       456       457 
##  40957.90  46613.57  42246.24  42596.18  44217.97  47939.14  37805.35  42658.50 
##       458       459       460       461       462       463       464       465 
##  38078.11  45653.19  49176.03  51798.67  48525.61  50868.26  51069.95  52818.38 
##       466       467       468       469       470       471       472       473 
##  52315.58  55261.69  52587.84  57643.05  50897.61  48506.63  47091.65  43713.30 
##       474       475       476       477       478       479       480       481 
##  47472.43  54941.73  49364.23  51068.83  45853.51  44231.21  47066.42  36472.17 
##       482       483       484       485       486       487       488       489 
##  30028.58  31899.40  34598.23  36089.39  37056.02  30691.74  43231.98  49897.50 
##       490       491       492       493       494       495       496       497 
##  56733.24  51440.49  56277.40  63917.17  67731.63  53976.97  44547.30  42570.70 
##       498       499       500       501       502       503       504       505 
##  42894.16  43685.95  38168.28  40569.12  45874.86  51561.01  52271.25  52381.90 
##       506       507       508       509       510       511       512       513 
##  46078.80  47419.85  43676.09  46433.74  46099.16  39809.93  40941.91  40116.40 
##       514       515       516       517       518       519       520       521 
##  41222.91  43865.04  36699.47  31975.08  55883.76  64050.93  67706.77  61080.59 
##       522       523       524       525       526       527       528       529 
##  62421.14  76017.57  82999.80  57930.17  52796.15  49487.87  53870.31  53376.26 
##       530       531       532       533       534       535       536       537 
##  43552.07  48547.84  61218.35  55734.89  59135.21  63126.13  60176.41  55203.24 
##       538       539       540       541       542       543       544       545 
##  48660.36  47315.20  55258.57  55008.79  47562.97  49788.35  49614.88  50309.26 
##       546       547       548       549       550       551       552       553 
##  40950.91  32780.24  37125.46  45248.42  45045.23  46752.45  40757.58  49777.61 
##       554       555       556       557       558       559       560       561 
##  50933.82  40705.00  50253.43  58122.37  57486.82  61087.34  56851.26  68620.95 
##       562       563       564       565       566       567       568       569 
##  85322.59  75405.87  63960.51  68383.17  66506.10  67693.66  59257.11  43233.73 
##       570       571       572       573       574       575       576       577 
##  50247.81  56157.51  57341.20  59418.34  60065.88  57190.08  69446.21  58811.38 
##       578       579       580       581       582       583       584       585 
##  52529.52  60136.94  61642.09  54730.79  61002.16  56574.89  53617.17  67197.73 
##       586       587       588       589       590       591       592       593 
##  52615.06  59964.97  59056.66  52774.05  52078.67  52354.92  43063.63  45862.62 
##       594       595       596       597       598       599       600       601 
##  40484.95  44734.01  53504.02  46830.13  52693.62  55073.23  60746.64  56901.84 
##       602       603       604       605       606       607       608       609 
##  61719.27  53281.47  55162.90  55939.83  58249.76  58824.24  58364.66  52537.63 
##       610       611       612       613       614       615       616       617 
##  59604.67  57663.29  54758.27  51461.85  44419.42  55938.46  59828.84  50757.36 
##       618       619       620       621       622       623       624       625 
##  61167.27  65355.38  58840.23  81084.65  66196.13  58519.64  60524.09  55873.89 
##       626       627       628       629       630       631       632       633 
##  46201.94  56917.45  37459.04  37319.16  46894.70  57385.28  55428.42  84179.12 
##       634       635       636       637       638       639       640       641 
##  74357.93  76560.33  78198.86  72921.22  65635.01  62266.78  50162.64  48529.73 
##       642       643       644       645       646       647       648       649 
##  47420.48  45901.59  44285.04  46963.89  51584.74  66566.80  81001.85  78123.05 
##       650       651       652       653       654       655       656       657 
##  79027.49  84903.34  98358.02  93112.73  63360.67  60810.59  57762.70  58748.06 
##       658       659       660       661       662       663       664       665 
##  55186.38  45591.99  47978.10  52299.10  51490.70  63061.07  62938.68  63228.42 
##       666       667       668       669       670       671       672       673 
##  51675.28  53035.81  54055.02  49390.33  43365.61  46402.76  43999.79  47489.16 
##       674       675       676       677       678       679       680       681 
##  45239.93  38072.24  32726.28  32723.79  35474.82  40210.32  42472.42  40475.46 
##       682       683       684       685       686       687       688       689 
##  40499.06  40948.16  35286.36  41620.43  41117.51  41416.99  43413.95  54129.58 
##       690       691       692       693       694       695       696       697 
##  62593.11  70648.26  59937.25  55942.08  52822.13  57980.00  48265.72  41960.12 
##       698       699       700       701       702       703       704       705 
##  35851.36  32568.05  31046.92  36557.60  34819.91  35493.05  41430.35  70110.87 
##       706       707       708       709       710       711       712       713 
##  76273.96  93833.96  90150.51  92747.68 107783.82 106623.61  83968.93  84316.50 
##       714       715       716       717       718       719       720       721 
##  75648.52  72749.12  70724.19  53441.32  48836.33  52330.94  49833.94  38941.21 
##       722       723       724       725       726       727       728       729 
##  44513.21  40781.81  43028.54  40902.20  31602.79  35556.37  36182.06  29813.02 
##       730       731       732       733       734       735       736       737 
##  47893.68  50142.91  48175.42  53833.35  46234.54  46509.29  54496.38  40938.29 
##       738       739       740       741       742       743       744       745 
##  37347.76  45855.01  42627.28  44130.93  46901.57  46014.11  42430.70  49424.43 
##       746       747       748       749       750       751       752       753 
##  44442.02  65418.95  70742.92  66849.54  58779.28  78572.03  71641.49  70559.96 
##       754       755       756       757       758       759       760       761 
##  55786.97 104540.73 121623.02 126215.15 107728.37 110158.31 109405.24 107433.13 
##       762       763       764       765       766       767       768       769 
##  60078.49  45119.29  47029.83  45653.44  43628.63 152274.27 156714.16 181935.66 
##       770       771       772       773       774       775       776       777 
## 185504.58 179438.15 177434.20 184321.02  81469.05  72051.88  38403.82  41839.11 
##       778       779       780       781       782       783       784       785 
##  42248.37  46649.04  41044.07  41364.28  41206.80  45763.46  40497.19  40194.46 
##       786       787       788       789       790       791       792       793 
##  45311.87  48338.65  46591.97  43939.47  46680.01  50049.87  50456.00  44996.03 
##       794       795       796       797       798       799       800       801 
##  41029.33  41614.68  42025.07  36654.01  36735.81  36007.97  35898.56  47508.52 
##       802       803       804       805       806       807       808       809 
##  50239.57  56856.51  59006.46  53567.09  60734.03  68473.09  57336.08  50405.55 
##       810       811       812       813       814       815       816       817 
##  44253.69  48066.27  52437.35  50606.87  38608.13  36911.53  44494.48  52850.48 
##       818       819       820       821       822       823       824       825 
##  44495.97  38876.02  32577.92  43762.63  43941.22  41344.55  35512.66  44684.56 
##       826       827       828       829       830       831       832       833 
##  52734.58  57200.83  54042.16  53371.51  55935.96  59730.06  60384.34  53683.98 
##       834       835       836       837       838       839       840       841 
##  55506.47  54924.74  57171.48  60347.50  58509.53  49736.15  55192.50  50748.61 
##       842       843       844 
##  44490.73  48289.07  37563.57 
## 
## $shapiro.test
## [1] 0
## 
## $levenes.test
## [1] 0
## 
## $autcorr
## [1] "No autocorrelation evidence"
## 
## $post_sums
## [1] "Post-Est Warning"
## 
## $adjr_sq
## [1] 0.8098
## 
## $fstat.bootstrap
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot::boot(data = x, statistic = f.stat, R = Reps, formula = depvar ~ 
##     ., parallel = parr)
## 
## 
## Bootstrap Statistics :
##        original      bias    std. error
## t1*    5.041115   0.7690207    3.874757
## t2* 2707.342465 167.0931757  886.620239
## WARNING: All values of t3* are NA
## 
## $itsa.plot
## 
## $booted.ints
##       Parameter    Lower CI Median F-value   Upper CI
## 1 interrupt_var    1.122777       5.014462   13.21351
## 2    lag_depvar 1644.388785    2752.006490 4507.58176

Ahora con las tendencias descompuestas

require(zoo)
require(scales)
Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha2=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(gastador=ifelse(gastador=="Andrés",1,0)) %>%
    dplyr::mutate(treat=ifelse(fecha2>"2019-W26",1,0)) %>% 
    dplyr::mutate(gasto= dplyr::case_when(gasto=="Gas"~"Gas/Bencina",
                  gasto=="aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  gasto=="Tina"~"Electrodomésticos/mantención casa",
                  gasto=="Nexium"~"Farmacia",
                  gasto=="donaciones"~"Donaciones/regalos",
                  gasto=="Regalo chocolates"~"Donaciones/regalos",
                  gasto=="filtro piscina msp"~"Electrodomésticos/mantención casa",
                  gasto=="Chromecast"~"Electrodomésticos/mantención casa",
                  gasto=="Muebles ratan"~"Electrodomésticos/mantención casa",
                  gasto=="Vacuna Influenza"~"Farmacia",
                  gasto=="Easy"~"Electrodomésticos/mantención casa",
                  gasto=="Sopapo"~"Electrodomésticos/mantención casa",
                  gasto=="filtro agua"~"Electrodomésticos/mantención casa",
                  gasto=="ropa tami"~"Donaciones/regalos",
                  gasto=="yaz"~"Farmacia",
                  gasto=="Yaz"~"Farmacia",
                  gasto=="Remedio"~"Farmacia",
                  gasto=="Entel"~"VTR",
                  gasto=="Kerosen"~"Gas/Bencina",
                  gasto=="Parafina"~"Gas/Bencina",
                  gasto=="Plata basurero"~"Donaciones/regalos",
                  gasto=="Matri Andrés Kogan"~"Donaciones/regalos",
                  gasto=="Wild Protein"~"Comida",
                  gasto=="Granola Wild Foods"~"Comida",
                  gasto=="uber"~"Transporte",
                  gasto=="Uber Reñaca"~"Transporte",
                  gasto=="filtro piscina mspa"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza Alfombra"~"Electrodomésticos/mantención casa",
                  gasto=="Aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza alfombras"~"Electrodomésticos/mantención casa",
                  gasto=="Pila estufa"~"Electrodomésticos/mantención casa",
                  gasto=="Reloj"~"Electrodomésticos/mantención casa",
                  gasto=="Arreglo"~"Electrodomésticos/mantención casa",
                  gasto=="Pan Pepperino"~"Comida",
                  gasto=="Cookidoo"~"Comida",
                  gasto=="remedios"~"Farmacia",
                  gasto=="Bendina Reñaca"~"Gas/Bencina",
                  gasto=="Bencina Reñaca"~"Gas/Bencina",
                  gasto=="Vacunas Influenza"~"Farmacia",
                  gasto=="Remedios"~"Farmacia",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  #2024
                  gasto=="cartero"~"Correo",
                  gasto=="correo"~"Correo",
                  gasto=="Gaviscón y Paracetamol"~"Farmacia",
                  gasto=="Regalo Matri Cony"~"Donaciones/regalos",
                  gasto=="Regalo Matri Chepa"~"Donaciones/regalos",
                  gasto=="Aporte Basureros"~"Donaciones/regalos",
                  gasto=="donación"~"Donaciones/regalos",
                  gasto=="Plata Reciclaje y Basurero"~"Donaciones/regalos",
                  gasto=="basureros"~"Donaciones/regalos",
                  gasto=="Microondas regalo"~"Donaciones/regalos",
                  gasto=="Cruz Verde"~"Farmacia",
                  gasto=="Remedios Covid"~"Farmacia",      
                  gasto=="nacho"~"Electrodomésticos/mantención casa",
                  gasto=="Jardinero"~"Electrodomésticos/mantención casa",
                  gasto=="mantencion toyotomi"~"Electrodomésticos/mantención casa",
                  gasto=="Cámaras Seguridad M.Barrios"~"Electrodomésticos/mantención casa",      
                  gasto=="Uber cumple papá"~"Transporte",
                  gasto=="Uber"~"Transporte",
                  gasto=="Uber Matri Cony"~"Transporte",
                  gasto=="Bencina + tag"~"Gas/Bencina",
                  gasto=="Bencina + Tag cumple Delox"~"Gas/Bencina",
                  gasto=="Bencina + peajes Maite"~"Gas/Bencina",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Incoludido"~"Enceres",
                  gasto=="Cortina baño"~"Electrodomésticos/mantención casa",
                  gasto=="Forro cortina ducha"~"Electrodomésticos/mantención casa",
                  gasto=="Brussels"~"Comida",
                  gasto=="Tres toques"~"Enceres",
                  gasto=="Transferencia"~"Otros",
                  gasto=="prestamo"~"Otros",
                  gasto=="Préstamo Andrés"~"Otros",
                  gasto=="mouse"~"Otros",
                  gasto=="lamina"~"Otros",
      T~gasto)) %>% 
    dplyr::group_by(gastador, fecha,gasto, .drop=F) %>%
    #dplyr::mutate(fecha_simp=week(parse_date(fecha))) %>% 
#    dplyr::mutate(fecha_simp=tsibble::yearweek(fecha)) %>%#después de  diosi. Junio 24, 2019   
    dplyr::summarise(monto=sum(monto)) %>% 
    dplyr::mutate(gastador_nombre=plyr::revalue(as.character(gastador), c("0" = "Tami", "1"="Andrés"))) %>% 
  ggplot2::ggplot(aes(x = fecha, y = monto, color=as.factor(gastador_nombre))) +
  #stat_summary(geom = "line", fun.y = median, size = 1, alpha=0.5, aes(color="blue")) +
  geom_line(size=1) +
  facet_grid(gasto~.)+
  geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
  labs(y="Gastos (en miles)",x="Semanas y Meses", subtitle="Interlineado, incorporación de la Diosi; Azul= Tami; Rojo= Andrés") +
  ggtitle( "Figura 6. Gastos Semanales por Gastador e ítem (media)") +
  scale_y_continuous(labels = f <- function(x) paste0(x/1000)) + 
  scale_color_manual(name = "Gastador", values= c("blue", "red"), labels = c("Tami", "Andrés")) +
  scale_x_yearweek(breaks = "1 month", minor_breaks = "1 week", labels=date_format("%m/%y")) +
  guides(color = F)+
  theme_custom() +
  theme(axis.text.x = element_text(vjust = 0.5,angle = 35)) +
  theme(
    panel.border = element_blank(), 
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), 
    axis.line = element_line(colour = "black")
    )

# Apply MSTL decomposition
mstl_data_autplt <- forecast::mstl(Gastos_casa$monto, lambda = "auto",iterate=5000000,start = 
lubridate::decimal_date(as.Date("2019-03-03")))

# Convert the decomposed time series to a data frame
mstl_df <- data.frame(
  Date = as.Date(Gastos_casa$fecha, format="%d/%m/%Y"),
  Data = as.numeric(mstl_data_autplt[, "Data"]),
  Trend = as.numeric(mstl_data_autplt[, "Trend"]),
  Remainder = as.numeric(mstl_data_autplt[, "Remainder"])
)

# Reshape the data frame for ggplot2
mstl_long <- mstl_df %>%
  pivot_longer(cols = -Date, names_to = "Component", values_to = "Value")

# Plotting with ggplot2
ggplot(mstl_long, aes(x = Date, y = Value)) +
  geom_line() +
  theme_bw() + 
  labs(title = "Descomposición MSTL", x = "Fecha", y = "Valor") +
  scale_x_date(date_breaks = "3 months", date_labels = "%m-%Y") +
  facet_wrap(~ Component, scales = "free_y", ncol = 1) +
  theme(strip.text = element_text(size = 12),
        axis.text.x = element_text(angle = 90, hjust = 1))

library(bsts)
library(CausalImpact)
ts_week_covid<-  
Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_week=strftime(fecha, format = "%Y-W%V")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::group_by(fecha_week)%>%
    dplyr::summarise(gasto_total=sum(monto,na.rm=T)/1000,min_day=min(day))%>%
    dplyr::ungroup() %>% 
    dplyr::mutate(covid=dplyr::case_when(min_day>=as.Date("2020-03-17")~1,TRUE~0))%>%
    dplyr::mutate(covid=as.factor(covid))%>%
    data.frame()


ts_week_covid$gasto_total_na<-ts_week_covid$gasto_total
post_resp<-ts_week_covid$gasto_total[which(ts_week_covid$covid==1)]
ts_week_covid$gasto_total_na[which(ts_week_covid$covid==1)]<-NA
ts_week_covid$gasto_total[which(ts_week_covid$covid==0)]
##  [1]  98.357   4.780  56.784  50.506  64.483  67.248  49.299  35.786  58.503
## [10]  64.083  20.148  73.476 127.004  81.551  69.599 134.446  58.936  26.145
## [19] 129.927 104.989 130.860  81.893  95.697  64.579 303.471 151.106  49.275
## [28]  76.293  33.940  83.071 119.512  20.942  58.055  71.728  44.090  33.740
## [37]  59.264  77.410  60.831  63.376  48.754 235.284  29.604 115.143  72.419
## [46]   5.980  80.063 149.178  69.918 107.601  72.724  63.203  99.681 130.309
## [55] 195.898 112.066
# Model 1
ssd <- list()
# Local trend, weekly-seasonal #https://qastack.mx/stats/209426/predictions-from-bsts-model-in-r-are-failing-completely - PUSE UN GENERALIZED LOCAL TREND
ssd <- AddLocalLevel(ssd, ts_week_covid$gasto_total_na) #AddSemilocalLinearTrend #AddLocalLevel
# Add weekly seasonal
ssd <- AddSeasonal(ssd, ts_week_covid$gasto_total_na,nseasons=5, season.duration = 52) #weeks OJO, ESTOS NO SON WEEKS VERDADEROS. PORQUE TENGO MAS DE EUN AÑO
ssd <- AddSeasonal(ssd, ts_week_covid$gasto_total_na, nseasons = 12, season.duration =4) #years
# For example, to add a day-of-week component to data with daily granularity, use model.args = list(nseasons = 7, season.duration = 1). To add a day-of-week component to data with hourly granularity, set model.args = list(nseasons = 7, season.duration = 24).
model1d1 <- bsts(ts_week_covid$gasto_total_na, 
               state.specification = ssd, #A list with elements created by AddLocalLinearTrend, AddSeasonal, and similar functions for adding components of state. See the help page for state.specification.
               family ="student", #A Bayesian Analysis of Time-Series Event Count Data. POISSON NO SE PUEDE OCUPAR
               niter = 20000, 
               #burn = 200, #http://finzi.psych.upenn.edu/library/bsts/html/SuggestBurn.html Suggest the size of an MCMC burn in sample as a proportion of the total run.
               seed= 2125)
## =-=-=-=-= Iteration 0 Mon Jun 30 01:02:26 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 2000 Mon Jun 30 01:02:36 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 4000 Mon Jun 30 01:02:45 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 6000 Mon Jun 30 01:02:54 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 8000 Mon Jun 30 01:03:04 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 10000 Mon Jun 30 01:03:13 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 12000 Mon Jun 30 01:03:23 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 14000 Mon Jun 30 01:03:32 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 16000 Mon Jun 30 01:03:42 2025
##  =-=-=-=-=
## =-=-=-=-= Iteration 18000 Mon Jun 30 01:03:51 2025
##  =-=-=-=-=
#,
#               dynamic.regression=T)
#plot(model1d1, main = "Model 1")
#plot(model1d1, "components")

impact2d1 <- CausalImpact(bsts.model = model1d1,
                       post.period.response = post_resp)
plot(impact2d1)+
xlab("Date")+
  ylab("Monto Semanal (En miles)")

burn1d1 <- SuggestBurn(0.1, model1d1)
corpus <- Corpus(VectorSource(Gastos_casa$obs)) # formato de texto
d  <- tm_map(corpus, tolower)
d  <- tm_map(d, stripWhitespace)
d <- tm_map(d, removePunctuation)
d <- tm_map(d, removeNumbers)
d <- tm_map(d, removeWords, stopwords("spanish"))
d <- tm_map(d, removeWords, "menos")
tdm <- TermDocumentMatrix(d)
m <- as.matrix(tdm) #lo vuelve una matriz
v <- sort(rowSums(m),decreasing=TRUE) #lo ordena y suma
df <- data.frame(word = names(v),freq=v) # lo nombra y le da formato de data.frame
#findFreqTerms(tdm)
#require(devtools)
#install_github("lchiffon/wordcloud2")
#wordcloud2::wordcloud2(v, size=1.2)
wordcloud(words = df$word, freq = df$freq, 
          max.words=100, random.order=FALSE, rot.per=0.35, 
          colors=brewer.pal(8, "Dark2"), main="Figura 7. Nube de Palabras, Observaciones")

fit_month_gasto <- Gastos_casa %>%
    dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
    dplyr::mutate(fecha_month=strftime(fecha, format = "%Y-%m")) %>%
    dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))%>%
    dplyr::mutate(gasto2= dplyr::case_when(gasto=="Gas"~"Gas/Bencina",
                  gasto=="aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  gasto=="Tina"~"Electrodomésticos/mantención casa",
                  gasto=="Nexium"~"Farmacia",
                  gasto=="donaciones"~"Donaciones/regalos",
                  gasto=="Regalo chocolates"~"Donaciones/regalos",
                  gasto=="filtro piscina msp"~"Electrodomésticos/mantención casa",
                  gasto=="Chromecast"~"Electrodomésticos/mantención casa",
                  gasto=="Muebles ratan"~"Electrodomésticos/mantención casa",
                  gasto=="Vacuna Influenza"~"Farmacia",
                  gasto=="Easy"~"Electrodomésticos/mantención casa",
                  gasto=="Sopapo"~"Electrodomésticos/mantención casa",
                  gasto=="filtro agua"~"Electrodomésticos/mantención casa",
                  gasto=="ropa tami"~"Donaciones/regalos",
                  gasto=="yaz"~"Farmacia",
                  gasto=="Yaz"~"Farmacia",
                  gasto=="Remedio"~"Farmacia",
                  gasto=="Entel"~"VTR",
                  gasto=="Kerosen"~"Gas/Bencina",
                  gasto=="Parafina"~"Gas/Bencina",
                  gasto=="Plata basurero"~"Donaciones/regalos",
                  gasto=="Matri Andrés Kogan"~"Donaciones/regalos",
                  gasto=="Wild Protein"~"Comida",
                  gasto=="Granola Wild Foods"~"Comida",
                  gasto=="uber"~"Transporte",
                  gasto=="Uber Reñaca"~"Transporte",
                  gasto=="filtro piscina mspa"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza Alfombra"~"Electrodomésticos/mantención casa",
                  gasto=="Aspiradora"~"Electrodomésticos/mantención casa",
                  gasto=="Limpieza alfombras"~"Electrodomésticos/mantención casa",
                  gasto=="Pila estufa"~"Electrodomésticos/mantención casa",
                  gasto=="Reloj"~"Electrodomésticos/mantención casa",
                  gasto=="Arreglo"~"Electrodomésticos/mantención casa",
                  gasto=="Pan Pepperino"~"Comida",
                  gasto=="Cookidoo"~"Comida",
                  gasto=="remedios"~"Farmacia",
                  gasto=="Bendina Reñaca"~"Gas/Bencina",
                  gasto=="Bencina Reñaca"~"Gas/Bencina",
                  gasto=="Vacunas Influenza"~"Farmacia",
                  gasto=="Remedios"~"Farmacia",
                  gasto=="Plata fiestas patrias basureros"~"Donaciones/regalos",
                  #2024
                  gasto=="cartero"~"Correo",
                  gasto=="correo"~"Correo",
                  gasto=="Gaviscón y Paracetamol"~"Farmacia",
                  gasto=="Regalo Matri Cony"~"Donaciones/regalos",
                  gasto=="Regalo Matri Chepa"~"Donaciones/regalos",
                  gasto=="Aporte Basureros"~"Donaciones/regalos",
                  gasto=="donación"~"Donaciones/regalos",
                  gasto=="Plata Reciclaje y Basurero"~"Donaciones/regalos",
                  gasto=="basureros"~"Donaciones/regalos",
                  gasto=="Microondas regalo"~"Donaciones/regalos",
                  gasto=="Cruz Verde"~"Farmacia",
                  gasto=="Remedios Covid"~"Farmacia",      
                  gasto=="nacho"~"Electrodomésticos/mantención casa",
                  gasto=="Jardinero"~"Electrodomésticos/mantención casa",
                  gasto=="mantencion toyotomi"~"Electrodomésticos/mantención casa",
                  gasto=="Cámaras Seguridad M.Barrios"~"Electrodomésticos/mantención casa",      
                  gasto=="Uber cumple papá"~"Transporte",
                  gasto=="Uber"~"Transporte",
                  gasto=="Uber Matri Cony"~"Transporte",
                  gasto=="Bencina + tag"~"Gas/Bencina",
                  gasto=="Bencina + Tag cumple Delox"~"Gas/Bencina",
                  gasto=="Bencina + peajes Maite"~"Gas/Bencina",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Crunchyroll"~"Netflix",
                  gasto=="Incoludido"~"Enceres",
                  gasto=="Cortina baño"~"Electrodomésticos/mantención casa",
                  gasto=="Forro cortina ducha"~"Electrodomésticos/mantención casa",
                  gasto=="Brussels"~"Comida",
                  gasto=="Tres toques"~"Enceres",
                  gasto=="Transferencia"~"Otros",
                  gasto=="prestamo"~"Otros",
                  gasto=="Préstamo Andrés"~"Otros",
                  gasto=="mouse"~"Otros",
                  gasto=="lamina"~"Otros",
      T~gasto)) %>% 
  dplyr::mutate(fecha_month=factor(fecha_month, levels=format(seq(from = as.Date("2019-03-03"), to = as.Date(substr(Sys.time(),1,10)), by = "1 month"),"%Y-%m")))%>% 
  dplyr::mutate(gasto2=factor(gasto2, levels=c("Agua", "Comida", "Comunicaciones","Electricidad", "Enceres", "Farmacia", "Gas/Bencina", "Diosi", "donaciones/regalos", "Electrodomésticos/ Mantención casa", "VTR", "Netflix", "Otros")))%>% 
    dplyr::group_by(fecha_month, gasto2, .drop=F)%>%
    dplyr::summarise(gasto_total=sum(monto, na.rm = T)/1000)%>%
  data.frame() %>% na.omit()

fit_month_gasto_25<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2025",fecha_month)) %>% 
    #sacar el ultimo mes
    dplyr::filter(as.character(format(as.Date(substr(Sys.time(),1,10)),"%Y-%m"))!=fecha_month) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_24<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2024",fecha_month)) %>% 
    #sacar el ultimo mes
    dplyr::filter(as.character(format(as.Date(substr(Sys.time(),1,10)),"%Y-%m"))!=fecha_month) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_23<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2023",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_22<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2022",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()

fit_month_gasto_21<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2021",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame()%>% ungroup()


fit_month_gasto_20<-
fit_month_gasto %>% 
    #dplyr::filter()
    dplyr::filter(grepl("2020",fecha_month)) %>% 
    dplyr::group_by(gasto2) %>% 
    dplyr::summarise(gasto_prom=mean(gasto_total, na.rm=T)) %>% 
  data.frame() %>% ungroup()

fit_month_gasto_25 %>% 
dplyr::right_join(fit_month_gasto_24,by="gasto2") %>%
dplyr::right_join(fit_month_gasto_23,by="gasto2") %>%
dplyr::right_join(fit_month_gasto_22,by="gasto2") %>%
dplyr::right_join(fit_month_gasto_21,by="gasto2") %>% 
dplyr::right_join(fit_month_gasto_20,by="gasto2") %>% 
  janitor::adorn_totals() %>% 
  #dplyr::select(-3)%>% 
  knitr::kable(format = "markdown", size=12, col.names= c("Item","2025","2024","2023","2022","2021","2020"))
Item 2025 2024 2023 2022 2021 2020
Agua 11.4882 6.993667 5.195333 5.410333 5.849167 9.93775
Comida 250.2842 326.890000 366.009167 312.386750 317.896583 392.93367
Comunicaciones 0.0000 0.000000 0.000000 0.000000 0.000000 0.00000
Electricidad 55.4514 83.582750 38.104750 47.072333 29.523000 20.60458
Enceres 2.6380 23.989000 18.259750 24.219750 14.801167 39.01200
Farmacia 0.0000 0.000000 10.704083 2.835000 13.996083 14.03675
Gas/Bencina 33.1500 44.292667 42.636000 45.575000 13.583667 17.25833
Diosi 20.8978 33.319583 55.804250 31.180667 52.687833 37.12133
donaciones/regalos 0.0000 0.000000 0.000000 0.000000 0.000000 0.00000
Electrodomésticos/ Mantención casa 0.0000 0.000000 0.000000 0.000000 0.000000 0.00000
VTR 17.5960 18.326667 12.829167 25.156667 19.086917 19.11375
Netflix 0.0000 1.391417 8.713833 7.151583 7.028750 8.24725
Otros 0.0000 76.164000 5.481667 5.000000 0.000000 0.00000
Total 391.5056 614.949750 563.738000 505.988083 474.453167 558.26542
## Joining with `by = join_by(word)`


2. UF Proyectada

Saqué la UF proyectada

#options(max.print=5000)

uf18 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2018.htm")%>% rvest::html_nodes("table")
uf19 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2019.htm")%>% rvest::html_nodes("table")
uf20 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2020.htm")%>% rvest::html_nodes("table")
uf21 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2021.htm")%>% rvest::html_nodes("table")
uf22 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2022.htm")%>% rvest::html_nodes("table")
uf23 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2023.htm")%>% rvest::html_nodes("table")
uf24 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2024.htm")%>% rvest::html_nodes("table")

tryCatch(uf25 <-rvest::read_html("https://www.sii.cl/valores_y_fechas/uf/uf2025.htm")%>% rvest::html_nodes("table"),
    error = function(c) {
      uf24b <<- cbind.data.frame(Día=NA, variable=NA, value=NA)
      
    }
  )

tryCatch(uf25 <-uf25[[length(uf25)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1),
    error = function(c) {
      uf25 <<- cbind.data.frame(Día=NA, variable=NA, value=NA)
    }
)

uf_serie<-
bind_rows(
cbind.data.frame(anio= 2018, uf18[[length(uf18)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2019, uf19[[length(uf19)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2020, uf20[[length(uf20)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2021, uf21[[length(uf21)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2022, uf22[[length(uf22)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2023, uf23[[length(uf23)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),

cbind.data.frame(anio= 2024, uf23[[length(uf24)]] %>% rvest::html_table() %>% data.frame() %>% reshape2::melt(id.vars=1)),
cbind.data.frame(anio= 2025, uf25)
)

uf_serie_corrected<-
uf_serie %>% 
dplyr::mutate(month=plyr::revalue(tolower(.[[3]]),c("ene" = 1, "feb"=2, "mar"=3, "abr"=4, "may"=5, "jun"=6, "jul"=7, "ago"=8, "sep"=9, "oct"=10, "nov"=11, "dic"=12))) %>% 
  dplyr::mutate(value=stringr::str_trim(value), value= sub("\\.","",value),value= as.numeric(sub("\\,",".",value))) %>% 
  dplyr::mutate(date=paste0(sprintf("%02d", .[[2]])," ",sprintf("%02d",as.numeric(month)),", ",.[[1]]), date3=lubridate::parse_date_time(date,c("%d %m, %Y"),exact=T),date2=date3) %>% 
   na.omit()#%>%  dplyr::filter(is.na(date3))
## Warning: There was 1 warning in `dplyr::mutate()`.
## i In argument: `date3 = lubridate::parse_date_time(date, c("%d %m, %Y"), exact
##   = T)`.
## Caused by warning:
## !  54 failed to parse.
#Day of the month as decimal number (1–31), with a leading space for a single-digit number.
#Abbreviated month name in the current locale on this platform. (Also matches full name on input: in some locales there are no abbreviations of names.)

warning(paste0("number of observations:",nrow(uf_serie_corrected),",  min uf: ",min(uf_serie_corrected$value),",  min date: ",min(uf_serie_corrected $date3 )))
## Warning: number of observations:2746, min uf: 26799.01, min date: 2018-01-01
# 
# uf_proyectado <- readxl::read_excel("uf_proyectado.xlsx") %>% dplyr::arrange(Período) %>% 
#   dplyr::mutate(Período= as.Date(lubridate::parse_date_time(Período, c("%Y-%m-%d"),exact=T)))

ts_uf_proy<-
ts(data = uf_serie_corrected$value, 
   start = as.numeric(as.Date("2018-01-01")), 
   end = as.numeric(as.Date(uf_serie_corrected$date3[length(uf_serie_corrected$date3)])), frequency = 1,
   deltat = 1, ts.eps = getOption("ts.eps"))

fit_tbats <- forecast::tbats(ts_uf_proy)
## Warning in bats(as.numeric(y), use.box.cox = use.box.cox, use.trend =
## use.trend, : optim() did not converge.
fr_fit_tbats<-forecast::forecast(fit_tbats, h=298)
# Configurar API Key
nixtlar::nixtla_set_api_key(Sys.getenv("API_NIXTLA"))
## API key has been set for the current session.
try(nixtlar::nixtla_set_api_key(Sys.getenv("NIXTLA")))
## API key has been set for the current session.
# Preparar datos en formato requerido por TimeGPT
uf_timegpt <- uf_serie_corrected %>%
    dplyr::rename(ds = date3, y = value) %>%
    dplyr::mutate(ds = format(ds, "%Y-%m-%d")) %>%
    dplyr::mutate(unique_id = "serie_1")%>%
    dplyr::select(unique_id, ds, y)

# Realizar pronóstico con TimeGPT
timegpt_fcst <- nixtlar::nixtla_client_forecast(
  uf_timegpt,
  h = 298,               # 298 días a pronosticar
  freq = "D",            # Frecuencia diaria
  add_history = TRUE,     # Incluir datos históricos en el output
  level = c(80,95),
  model=  "timegpt-1-long-horizon", 
  clean_ex_first = TRUE
)
## The specified horizon h exceeds the model horizon. This may lead to less accurate forecasts. Please consider using a smaller horizon.
# 1. Convertir 'ds' a fecha en ambas tablas
uf_timegpt <- uf_timegpt %>% 
    mutate(ds = as.Date(ds))

timegpt_fcst <- timegpt_fcst %>% 
    mutate(ds = as.Date(ds))

# 2. Combinar los datos históricos y el pronóstico
full_data <- bind_rows(
    uf_timegpt %>% mutate(type = "Histórico"),
    timegpt_fcst %>% mutate(type = "Pronóstico")
)

# Visualizar resultados
ggplot(full_data, aes(x = ds, y = TimeGPT)) +
    # Intervalo de confianza del 95%
    geom_ribbon(aes(ymin = `TimeGPT-lo-95`, ymax = `TimeGPT-hi-95`), 
                fill = "#4B9CD3", alpha = 0.2) +
    # Intervalo de confianza del 80%
    geom_ribbon(aes(ymin = `TimeGPT-lo-80`, ymax = `TimeGPT-hi-80`), 
                fill = "#4B9CD3", alpha = 0.3) +
    # Línea histórica
    geom_line(data = filter(full_data, type == "Histórico"), 
              aes(color = "Histórico"), size = 1) +
    # Línea de pronóstico
    geom_line(data = filter(full_data, type == "Pronóstico"), 
              aes(color = "Pronóstico"), size = 1) +
    # Línea vertical separadora
    geom_vline(xintercept = max(filter(full_data, type == "Histórico")$ds), 
               linetype = "dashed", color = "red", size = 0.8) +
    # Configuración del eje x
    scale_x_date(
        date_breaks = "3 months",  # Reduce la frecuencia de las etiquetas
        date_labels = "%b %Y",  # Formato de etiquetas (mes y año)
    ) +
    # Configuración del eje y
    scale_y_continuous(labels = function(x) format(x, scientific = FALSE)) +
    # Configuración de colores
    scale_color_manual(
        name = "Leyenda",
        values = c("Histórico" = "black", "Pronóstico" = "#4B9CD3")
    ) +
    # Títulos y subtítulos
    labs(
        title = "Pronóstico de Serie Temporal con TimeGPT",
        subtitle = "Intervalos de confianza al 80% (más oscuro) y 95% (más claro)",
        x = "Fecha",
        y = "Valor",
        color = "Leyenda"
    ) +
    # Tema y estilos
    theme_minimal() +
    theme(
        axis.text.x = element_text(angle = 45, hjust = 1, size = 8),
        axis.title.x = element_text(size = 10),
        axis.title.y = element_text(size = 10),
        legend.position = "bottom",
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank()
    )
## Warning: Removed 2746 rows containing missing values or values outside the scale range
## (`geom_line()`).

library(prophet)
## Warning: package 'prophet' was built under R version 4.4.3
## Loading required package: Rcpp
## Warning: package 'Rcpp' was built under R version 4.4.3
## Loading required package: rlang
## Warning: package 'rlang' was built under R version 4.4.3
## 
## Attaching package: 'rlang'
## The following objects are masked from 'package:purrr':
## 
##     %@%, flatten, flatten_chr, flatten_dbl, flatten_int, flatten_lgl,
##     flatten_raw, invoke, splice
## The following object is masked from 'package:sparklyr':
## 
##     invoke
## The following object is masked from 'package:data.table':
## 
##     :=
  model <- prophet(
  cbind.data.frame(ds= as.Date(uf_timegpt$ds), y=uf_timegpt$y),
  # Trend flexibility
  growth = "linear",
  changepoint.prior.scale = 0.05,  # Reduced for smoother trend
  n.changepoints = 50,  # Increased from default 25
  
  # Seasonality
  yearly.seasonality = TRUE,
  weekly.seasonality = TRUE,
  daily.seasonality = FALSE,  # Disabled for daily data
  seasonality.mode = "additive",
  seasonality.prior.scale = 15,  # Increased to capture stronger seasonality
  
  # Holidays (if applicable)
  # holidays = generated_holidays  # Create with add_country_holidays()
  
  # Uncertainty intervals
  interval.width = 0.95,
  uncertainty.samples = 1000
)
future <- make_future_dataframe(model, periods = 298, include_history = T)
forecast <- predict(model, future)
forecast <- forecast[, c("ds", "yhat", "yhat_lower", "yhat_upper")]
forecast$pred <- ifelse(forecast$ds > max(uf_timegpt$ds), 1,0)
## Warning in check_tzones(e1, e2): 'tzone' attributes are inconsistent
forecast$ds <- as.Date(forecast$ds)

ggplot(forecast, aes(x = ds, y = yhat)) +
  geom_ribbon(aes(ymin = yhat_lower, ymax = yhat_upper), 
              fill = "#9ecae1", alpha = 0.4) +
  geom_line(color = "#08519c", linewidth = 0.8) +
  geom_vline(xintercept = max(uf_timegpt$ds), color = "red", linetype = "dashed", linewidth=1) +
  scale_x_date(date_breaks = "6 months", date_labels = "%y %b") +
  scale_y_continuous(labels = scales::comma) +
  labs(title = "Valores predichos (95%IC)",
      # subtitle = "March 10, 2025 - May 7, 2025",
       x = "Fecha",
       y = "Valor",
      # caption = "Source: Prophet Forecast Model"
      ) +
  theme_minimal() +
  theme(
    plot.title = element_text(face = "bold", size = 14),
    plot.subtitle = element_text(color = "gray50"),
    axis.text.x = element_text(angle = 45, hjust = 1),
    panel.grid.minor = element_blank(),
    panel.border = element_blank(),
    plot.caption = element_text(color = "gray30")
  )

La proyección de la UF a 298 días más 2025-07-09 00:04:58 sería de: 26.580 pesos// Percentil 95% más alto proyectado: 35.072,1

Según TimeGPT: La proyección de la UF a 298 días más 2026-05-03 sería de: 40.188,82 pesos// Percentil 80% más alto proyectado: 40.557,46 pesos// Percentil 95% más alto proyectado: 41.617,64

Según prophet: La proyección de la UF a 298 días más 2026-05-03 sería de: 41.974 pesos// Percentil 95% más alto proyectado: 50.885

Ahora con un modelo ARIMA automático


arima_optimal_uf = forecast::auto.arima(ts_uf_proy)

  autoplotly::autoplotly(forecast::forecast(arima_optimal_uf, h=298), ts.colour = "darkred",
           predict.colour = "blue", predict.linetype = "dashed")%>% 
  plotly::layout(showlegend = F, 
          yaxis = list(title = "Gastos"),
         xaxis = list(
    title="Fecha",
      ticktext = as.list(seq(from = as.Date("2018-01-01"), 
                                  to = as.Date("2018-01-01")+length(fit_tbats$fitted.values)+298, by = 90)), 
      tickvals = as.list(seq(from = as.numeric(as.Date("2018-01-01")), 
                             to = as.numeric(as.Date("2018-01-01"))+length(fit_tbats$fitted.values)+298, by = 90)),
      tickmode = "array",
    tickangle = 90
    ))
fr_fit_tbats_uf<-forecast::forecast(arima_optimal_uf, h=298)
dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats)),variable) %>% dplyr::summarise(max=max(value)) %>% 
dplyr::right_join(dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_uf)),variable) %>% dplyr::summarise(max=max(value)),by="variable") %>% 
  dplyr::mutate(variable=factor(variable,levels=c("Lo.95","Lo.80","Point.Forecast","Hi.80","Hi.95"))) %>% 
  dplyr::arrange(variable) %>% 
  knitr::kable(format="markdown", caption="Tabla. Estimación UF (de aquí a 298 días) según cálculos de gastos mensuales",
               col.names= c("Item","UF Proyectada (TBATS)","UF Proyectada (ARIMA)"))
## No id variables; using all as measure variables
## No id variables; using all as measure variables
Tabla. Estimación UF (de aquí a 298 días) según cálculos de gastos mensuales
Item UF Proyectada (TBATS) UF Proyectada (ARIMA)
Lo.95 26197.33 26323.55
Lo.80 26329.23 26488.13
Point.Forecast 26580.21 26799.01
Hi.80 31419.69 32165.71
Hi.95 34328.67 35006.68


3. Gastos proyectados

Lo haré en base a 2 cálculos: el gasto semanal y el gasto mensual en base a mis gastos desde marzo de 2019. La primera proyección la hice añadiendo el precio del arriendo mensual y partiendo en 2 (porque es con yo y Tami). No se incluye el último mes.

Gastos_casa_nvo <- readr::read_csv(as.character(path_sec),
                               col_names = c("Tiempo", "gasto", "fecha", "obs", "monto", "gastador",
                                             "link"),skip=1) %>% 
              dplyr::mutate(fecha= lubridate::parse_date_time(fecha, c("%d/%m/%Y"),exact=T)) %>% 
              dplyr::mutate(fecha_month=strftime(fecha, format = "%Y-%m")) %>%
              dplyr::mutate(day=as.Date(as.character(lubridate::floor_date(fecha, "day"))))
Gastos_casa_m <-
Gastos_casa_nvo %>% dplyr::group_by(fecha_month)%>%
              dplyr::summarise(gasto_total=(sum(monto)+500000)/1000,fecha=first(fecha))%>%
              data.frame()

uf_serie_corrected_m <-
uf_serie_corrected %>% dplyr::mutate(ano_m=paste0(anio,"-",sprintf("%02d",as.numeric(month)))) %>%  dplyr::group_by(ano_m)%>%
              dplyr::summarise(uf=(mean(value))/1000,fecha=first(date3))%>%
              data.frame() %>% 
  dplyr::filter(fecha>="2019-02-28")
#Error: Error in standardise_path(file) : object 'enlace_gastos' not found

ts_uf_serie_corrected_m<-
ts(data = uf_serie_corrected_m$uf[-length(uf_serie_corrected_m$uf)], 
   start = 1, 
   end = nrow(uf_serie_corrected_m), 
   frequency = 1,
   deltat = 1, ts.eps = getOption("ts.eps"))

ts_gastos_casa_m<-
ts(data = Gastos_casa_m$gasto_total[-length(Gastos_casa_m$gasto_total)], 
   start = 1, 
   end = nrow(Gastos_casa_m), 
   frequency = 1,
   deltat = 1, ts.eps = getOption("ts.eps"))

fit_tbats_m <- forecast::tbats(ts_gastos_casa_m)

seq_dates<-format(seq(as.Date("2019/03/01"), by = "month", length = dim(Gastos_casa_m)[1]+12), "%m\n'%y")

autplo2t<-
  autoplotly::autoplotly(forecast::forecast(fit_tbats_m, h=12), ts.colour = "darkred",
           predict.colour = "blue", predict.linetype = "dashed")%>% 
  plotly::layout(showlegend = F, 
          yaxis = list(title = "Gastos (en miles)"),
         xaxis = list(
    title="Fecha",
      ticktext = as.list(seq_dates[seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)]), 
      tickvals = as.list(seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)),
      tickmode = "array"#"array"
    )) 

autplo2t

Ahora asumiendo un modelo ARIMA, e incluimos como regresor al precio de la UF.

paste0("Optimo pero sin regresor")
## [1] "Optimo pero sin regresor"
arima_optimal = forecast::auto.arima(ts_gastos_casa_m)
arima_optimal
## Series: ts_gastos_casa_m 
## ARIMA(1,0,0) with non-zero mean 
## 
## Coefficients:
##          ar1       mean
##       0.4299  1039.5096
## s.e.  0.1057    38.3598
## 
## sigma^2 = 37907:  log likelihood = -507.56
## AIC=1021.12   AICc=1021.45   BIC=1028.11
paste0("Optimo pero con regresor")
## [1] "Optimo pero con regresor"
arima_optimal2 = forecast::auto.arima(ts_gastos_casa_m, xreg=as.numeric(ts_uf_serie_corrected_m[1:(length(Gastos_casa_m$gasto_total))]))
arima_optimal2
## Series: ts_gastos_casa_m 
## Regression with ARIMA(1,0,0) errors 
## 
## Coefficients:
##          ar1  intercept     xreg
##       0.4100   701.0985  10.4065
## s.e.  0.1073   320.5008   9.7774
## 
## sigma^2 = 37890:  log likelihood = -507.01
## AIC=1022.03   AICc=1022.59   BIC=1031.35
forecast_uf<-
cbind.data.frame(fecha=as.Date(seq(as.numeric(as.Date(uf_serie_corrected$date3[length(uf_serie_corrected$date3)])),(as.numeric(as.Date(uf_serie_corrected$date3[length(uf_serie_corrected$date3)]))+299),by=1), origin = "1970-01-01"),forecast::forecast(fit_tbats, h=300)) %>% 
  dplyr::mutate(ano_m=stringr::str_extract(fecha,".{7}")) %>% 
  dplyr::group_by(ano_m)%>%
              dplyr::summarise(uf=(mean(`Hi 95`,na.rm=T))/1000,fecha=first(fecha))%>%
            data.frame()
autplo2t2<-
  autoplotly::autoplotly(forecast::forecast(arima_optimal2,xreg=c(forecast_uf$uf[1],forecast_uf$uf), h=12), ts.colour = "darkred",
           predict.colour = "blue", predict.linetype = "dashed")%>% 
  plotly::layout(showlegend = F, 
          yaxis = list(title = "Gastos (en miles)"),
         xaxis = list(
    title="Fecha",
      ticktext = as.list(seq_dates[seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)]), 
      tickvals = as.list(seq(from = 1, to = (dim(Gastos_casa_m)[1]+12), by = 3)),
      tickmode = "array"#"array"
    )) 

autplo2t2
fr_fit_tbats_m<-forecast::forecast(fit_tbats_m, h=12)
fr_fit_tbats_m2<-forecast::forecast(arima_optimal, h=12)
fr_fit_tbats_m3<-forecast::forecast(arima_optimal2, h=12,xreg=c(forecast_uf$uf[1],forecast_uf$uf))

dplyr::right_join(dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_m3)),variable) %>% dplyr::summarise(max=max(value)), dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_m2)),variable) %>% dplyr::summarise(max=max(value)),by="variable") %>% 
dplyr::right_join(dplyr::group_by(reshape2::melt(data.frame(fr_fit_tbats_m)),variable) %>% dplyr::summarise(max=max(value)),by="variable") %>% 
  dplyr::mutate(variable=factor(variable,levels=c("Lo.95","Lo.80","Point.Forecast","Hi.80","Hi.95"))) %>% 
  dplyr::arrange(variable) %>% 
  knitr::kable(format="markdown", caption="Estimación en miles de la plata a gastar en el futuro (de aquí a 12 meses) según cálculos de gastos mensuales",
               col.names= c("Item","Modelo ARIMA con regresor (UF)","Modelo ARIMA sin regresor","Modelo TBATS")) 
## No id variables; using all as measure variables
## No id variables; using all as measure variables
## No id variables; using all as measure variables
Estimación en miles de la plata a gastar en el futuro (de aquí a 12 meses) según cálculos de gastos mensuales
Item Modelo ARIMA con regresor (UF) Modelo ARIMA sin regresor Modelo TBATS
Lo.95 640.1200 616.8435 607.9829
Lo.80 784.9037 763.1390 701.1458
Point.Forecast 1058.4066 1039.4978 917.6171
Hi.80 1331.9094 1315.8566 1200.5224
Hi.95 1476.6931 1462.1521 1383.8652


4. Gastos mensuales (resumen manual)

path_sec2<- paste0("https://docs.google.com/spreadsheets/d/",Sys.getenv("SUPERSECRET"),"/export?format=csv&id=",Sys.getenv("SUPERSECRET"),"&gid=847461368")

Gastos_casa_mensual_2022 <- readr::read_csv(as.character(path_sec2),
                #col_names = c("Tiempo", "gasto", "fecha", "obs", "monto", "gastador","link"),
                skip=0)
## Rows: 80 Columns: 4
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): mes_ano
## dbl (3): n, Tami, Andrés
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(Gastos_casa_mensual_2022,5) %>% 
  knitr::kable("markdown",caption="Resumen mensual, primeras 5 observaciones")
Resumen mensual, primeras 5 observaciones
n mes_ano Tami Andrés
1 marzo_2019 175533 68268
2 abril_2019 152640 55031
3 mayo_2019 152985 192219
4 junio_2019 291067 84961
5 julio_2019 241389 205893


(
Gastos_casa_mensual_2022 %>% 
    reshape2::melt(id.var=c("n","mes_ano")) %>%
  dplyr::mutate(gastador=as.factor(variable)) %>% 
  dplyr::select(-variable) %>% 
 ggplot2::ggplot(aes(x = n, y = value, color=gastador)) +
  scale_color_manual(name="Gastador", values=c("red", "blue"))+
  geom_line(size=1) +
  #geom_vline(xintercept = as.Date("2019-06-24"),linetype = "dashed") +
  labs(y="Gastos (en miles)",x="Meses", subtitle="Azul= Tami; Rojo= Andrés") +
  ggtitle( "Gastos Mensuales (total manual)") +
  scale_y_continuous(labels = f <- function(x) paste0(x/1000)) + 
#  scale_color_manual(name = "Gastador", values= c("blue", "red"), labels = c("Tami", "Andrés")) +
#  scale_x_yearweek(breaks = "1 month", minor_breaks = "1 week", labels=date_format("%m/%y")) +
 # guides(color = F)+
  theme_custom() +
  theme(axis.text.x = element_text(vjust = 0.5,angle = 35)) +
  theme(
    panel.border = element_blank(), 
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), 
    axis.line = element_line(colour = "black")
    )
) %>% ggplotly()
Gastos_casa_mensual_2022$mes_ano <- gsub("marzo", "Mar", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("abril", "Apr", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("mayo", "May", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("junio", "Jun", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("julio", "Jul", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("agosto", "Aug", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("septiembre", "Sep", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("octubre", "Oct", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("noviembre", "Nov", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("diciembre", "Dec", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("enero", "Jan", Gastos_casa_mensual_2022$mes_ano)
Gastos_casa_mensual_2022$mes_ano <- gsub("febrero", "Feb", Gastos_casa_mensual_2022$mes_ano)

Gastos_casa_mensual_2022<- dplyr::filter(Gastos_casa_mensual_2022, !is.na(Tami))

Gastos_casa_mensual_2022$mes_ano <- parse_date_time(Gastos_casa_mensual_2022$mes_ano, "%b_%Y")

Gastos_casa_mensual_2022$mes_ano <- as.Date(as.character(Gastos_casa_mensual_2022$mes_ano))

Gastos_casa_mensual_2022_timegpt <- Gastos_casa_mensual_2022 %>%
  mutate(value = Tami + Andrés) %>%
  rename(ds = mes_ano, y = value) %>%
  mutate(#ds= format(ds, "%Y-%m"),
         unique_id = "1") %>% #it is only one series
  select(unique_id, ds, y)

#Convertir la base de UF a mensual
uf_timegpt_my <- uf_serie_corrected %>%
  dplyr::rename(ds = date3, y = value) %>%
  dplyr::mutate(ds = format(ds, "%Y-%m-%d")) %>%
  dplyr::mutate(unique_id = "serie_1")%>%
  dplyr::select(unique_id, ds, y) %>%
  mutate(ds = ymd(ds)) %>%  # Convert 'ds' to Date
  mutate(month = month(ds), year = year(ds)) %>%  # Extract month and year
  group_by(month, year) %>%  # Group by month and year
  summarise(average_y = mean(y))%>%  # Calculate average y
  mutate(ds = as.Date(paste0(year,"-",month, "-01")))%>%
  ungroup()%>%
  select(ds, uf=average_y)

Gastos_casa_mensual_2022_timegpt_ex<-
Gastos_casa_mensual_2022_timegpt |> 
  dplyr::left_join(uf_timegpt_my, by=c("ds"="ds")) 

#Historical Exogenous Variables: These should be included in the input data immediately following the id_col, ds, and y columns
gastos_timegpt_fcst <- nixtlar::nixtla_client_forecast(
  Gastos_casa_mensual_2022_timegpt_ex,
  h = 12,
  freq = "M",  # Monthly frequency
  add_history = TRUE,
  level = c(80, 95),
  model = "timegpt-1",#"timegpt-1-long-horizon",
  clean_ex_first = TRUE
)

# Convert 'ds' to Date format in both tables
Gastos_casa_mensual_2022_timegpt_corr <- Gastos_casa_mensual_2022_timegpt %>%
  mutate(ds = as.Date(paste0(ds, "-01")))  # Add day to make it a complete date

gastos_timegpt_fcst <- gastos_timegpt_fcst %>%
  mutate(ds = as.Date(paste0(ds, "-01")))  # Add day to make it a complete date

# Combine historical and forecast data
full_data_gastos <- bind_rows(
  Gastos_casa_mensual_2022_timegpt_corr %>% mutate(type = "Histórico"),
  gastos_timegpt_fcst %>% mutate(type = "Pronóstico")
)

full_data_gastos |> 
  dplyr::mutate(y= ifelse(is.na(y),TimeGPT, y)) |> 
# Visualize results
ggplot(aes(x = ds, y = y)) +
  geom_ribbon(aes(ymin = `TimeGPT-lo-95`, ymax = `TimeGPT-hi-95`),
              fill = "#4B9CD3", alpha = 0.2) +
  geom_ribbon(aes(ymin = `TimeGPT-lo-80`, ymax = `TimeGPT-hi-80`),
              fill = "#4B9CD3", alpha = 0.3) +
  geom_line(aes(color = type), linewidth = 1.5) +
  geom_vline(xintercept = max(filter(full_data_gastos, type == "Histórico")$ds),
             linetype = "dashed", color = "red", linewidth = 0.8) +
  scale_x_date(
    date_breaks = "3 months",
    date_labels = "%b %Y"
  ) +
  scale_y_continuous(
    name = "Gastos Totales",
    labels = scales::comma,
    breaks = pretty(full_data_gastos$y, n = 10),
    expand = expansion(mult = c(0.05, 0.05))
  ) +
  scale_color_manual(
    name = "Leyenda",
    values = c("Histórico" = "black", "Pronóstico" = "#4B9CD3")
  ) +
  labs(
    title = "Pronóstico de Gastos Mensuales (TimeGPT, ajustando por UF promedio mensual)",
    subtitle = "Intervalos de confianza al 80% (más oscuro) y 95% (más claro)",
    x = "Fecha",
    y = "Gastos Totales",
    color = "Leyenda"
  ) +
  theme_minimal() +
  theme(
    axis.text.x = element_text(angle = 45, hjust = 1),
    axis.title.x = element_text(size = 10),
    axis.title.y = element_text(size = 10),
    legend.position = "bottom",
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank()
  )


Session Info

Sys.getenv("R_LIBS_USER")
## [1] "D:\\a\\_temp\\Library"
sessionInfo()
## R version 4.4.0 (2024-04-24 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows Server 2022 x64 (build 20348)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=Spanish_Chile.1252  LC_CTYPE=Spanish_Chile.1252   
## [3] LC_MONETARY=Spanish_Chile.1252 LC_NUMERIC=C                  
## [5] LC_TIME=Spanish_Chile.1252    
## system code page: 65001
## 
## time zone: UTC
## tzcode source: internal
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] prophet_1.0         rlang_1.1.6         Rcpp_1.0.14        
##  [4] CausalImpact_1.3.0  bsts_0.9.10         BoomSpikeSlab_1.2.6
##  [7] Boom_0.9.15         scales_1.4.0        ggiraph_0.8.13     
## [10] tidytext_0.4.2      DT_0.33             janitor_2.2.1      
## [13] autoplotly_0.1.4    rvest_1.0.4         plotly_4.11.0      
## [16] xts_0.14.1          forecast_8.24.0     wordcloud_2.6      
## [19] RColorBrewer_1.1-3  SnowballC_0.7.1     tm_0.7-16          
## [22] NLP_0.3-2           tsibble_1.1.6       lubridate_1.9.4    
## [25] forcats_1.0.0       dplyr_1.1.4         purrr_1.0.4        
## [28] tidyr_1.3.1         tibble_3.3.0        tidyverse_2.0.0    
## [31] gsynth_1.2.1        sjPlot_2.8.17       lattice_0.22-6     
## [34] GGally_2.2.1        ggplot2_3.5.2       gridExtra_2.3      
## [37] plotrix_3.8-4       sparklyr_1.9.0      httr_1.4.7         
## [40] readxl_1.4.5        zoo_1.8-14          stringr_1.5.1      
## [43] stringi_1.8.7       DataExplorer_0.8.3  data.table_1.17.6  
## [46] reshape2_1.4.4      fUnitRoots_4040.81  plyr_1.8.9         
## [49] readr_2.1.5        
## 
## loaded via a namespace (and not attached):
##   [1] bitops_1.0-9        cellranger_1.1.0    datawizard_1.1.0   
##   [4] httr2_1.1.2         lifecycle_1.0.4     StanHeaders_2.32.10
##   [7] doParallel_1.0.17   globals_0.18.0      vroom_1.6.5        
##  [10] MASS_7.3-60.2       insight_1.3.0       crosstalk_1.2.1    
##  [13] magrittr_2.0.3      sass_0.4.10         rmarkdown_2.29     
##  [16] jquerylib_0.1.4     yaml_2.3.10         fracdiff_1.5-3     
##  [19] doRNG_1.8.6.2       askpass_1.2.1       pkgbuild_1.4.8     
##  [22] DBI_1.2.3           abind_1.4-8         quadprog_1.5-8     
##  [25] nnet_7.3-19         rappdirs_0.3.3      sandwich_3.1-1     
##  [28] inline_0.3.21       data.tree_1.1.0     tokenizers_0.3.0   
##  [31] listenv_0.9.1       anytime_0.3.11      performance_0.14.0 
##  [34] spatial_7.3-17      parallelly_1.45.0   codetools_0.2-20   
##  [37] xml2_1.3.8          tidyselect_1.2.1    ggeffects_2.3.0    
##  [40] farver_2.1.2        urca_1.3-4          its.analysis_1.6.0 
##  [43] matrixStats_1.5.0   stats4_4.4.0        jsonlite_2.0.0     
##  [46] ellipsis_0.3.2      Formula_1.2-5       iterators_1.0.14   
##  [49] systemfonts_1.2.3   foreach_1.5.2       tools_4.4.0        
##  [52] glue_1.8.0          xfun_0.52           TTR_0.24.4         
##  [55] ggfortify_0.4.17    loo_2.8.0           withr_3.0.2        
##  [58] timeSeries_4041.111 fastmap_1.2.0       boot_1.3-30        
##  [61] openssl_2.3.3       caTools_1.18.3      digest_0.6.37      
##  [64] timechange_0.3.0    R6_2.6.1            lfe_3.1.1          
##  [67] colorspace_2.1-1    networkD3_0.4.1     gtools_3.9.5       
##  [70] generics_0.1.4      htmlwidgets_1.6.4   ggstats_0.9.0      
##  [73] pkgconfig_2.0.3     gtable_0.3.6        timeDate_4041.110  
##  [76] lmtest_0.9-40       selectr_0.4-2       janeaustenr_1.0.0  
##  [79] htmltools_0.5.8.1   carData_3.0-5       tseries_0.10-58    
##  [82] snakecase_0.11.1    knitr_1.50          rstudioapi_0.17.1  
##  [85] tzdb_0.5.0          uuid_1.2-1          nlme_3.1-164       
##  [88] curl_6.4.0          cachem_1.1.0        sjlabelled_1.2.0   
##  [91] KernSmooth_2.23-22  parallel_4.4.0      fBasics_4041.97    
##  [94] pillar_1.10.2       vctrs_0.6.5         gplots_3.2.0       
##  [97] slam_0.1-55         car_3.1-3           dbplyr_2.5.0       
## [100] xtable_1.8-4        evaluate_1.0.4      mvtnorm_1.3-3      
## [103] cli_3.6.5           compiler_4.4.0      crayon_1.5.3       
## [106] rngtools_1.5.2      future.apply_1.20.0 labeling_0.4.3     
## [109] sjmisc_2.8.10       rstan_2.32.7        QuickJSR_1.8.0     
## [112] viridisLite_0.4.2   assertthat_0.2.1    lazyeval_0.2.2     
## [115] Matrix_1.7-0        sjstats_0.19.1      hms_1.1.3          
## [118] bit64_4.6.0-1       future_1.58.0       nixtlar_0.6.2      
## [121] extraDistr_1.10.0   igraph_2.1.4        RcppParallel_5.1.10
## [124] bslib_0.9.0         quantmod_0.4.28     bit_4.6.0
#save.image("__analisis.RData")

sesion_info <- devtools::session_info()
dplyr::select(
  tibble::as_tibble(sesion_info$packages),
  c(package, loadedversion, source)
) %>% 
  DT::datatable(filter = 'top', colnames = c('Row number' =1,'Variable' = 2, 'Percentage'= 3),
              caption = htmltools::tags$caption(
        style = 'caption-side: top; text-align: left;',
        '', htmltools::em('Packages')),
      options=list(
initComplete = htmlwidgets::JS(
        "function(settings, json) {",
        "$(this.api().tables().body()).css({
            'font-family': 'Helvetica Neue',
            'font-size': '50%', 
            'code-inline-font-size': '15%', 
            'white-space': 'nowrap',
            'line-height': '0.75em',
            'min-height': '0.5em'
            });",#;
        "}")))